BAB II

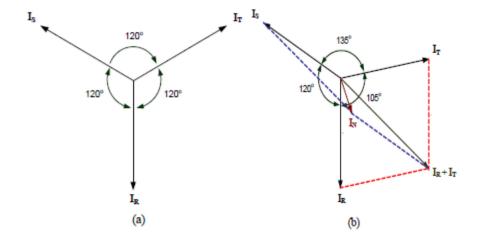
LANDASAN TEORI

2.1 Teori Transformator

Transformator merupakan suatu alat listrik yang mengubah tegangan arus bolak-balik dari satu tingkat ke tingkat yang lain melalui suatu gandengan magnet dan berdasarkan prinsip-prinsip induksi-elektromagnet. Transformator terdiri atas sebuah inti, yang terbuat dari besi berlapis dan dua buah kumparan, yaitu kumparan primer dan kumparan sekunder.

Penggunaan transformator yang sederhana dan handal memungkinkan dipilihnya tegangan yang sesuai dan ekonomis untuk tiap-tiap keperluan serta merupakan salah satu sebab penting bahwa arus bolak-balik sangat banyak dipergunakan untuk pembangkitan dan penyaluran tenaga listrik.

Prinsip kerja transformator adalah berdasarkan hukum Ampere dan hukum Faraday, yaitu: arus listrik dapat menimbulkan medan magnet dan sebaliknya medan magnet dapat menimbulkan arus listrik. Jika pada salah satu kumparan pada transformator diberi arus bolak-balik maka jumlah garis gaya magnet berubah-ubah. Akibatnya pada sisi primer terjadi induksi. Sisi sekunder menerima garis gaya magnet dari sisi primer yang jumlahnya berubah-ubah pula. Maka di sisi sekunder juga timbul induksi, akibatnya antara dua ujung terdapat beda tegangan.


2.2 Ketidakseimbangan Beban Pada Transformator

Yang dimaksud dengan keadaan seimbang adalah suatu keadaan di mana :

- Ketiga vektor arus / tegangan sama besar.
- Ketiga vektor saling membentuk sudut 120° satu sama lain.

Sedangkan yang dimaksud dengan keadaan tidak seimbang adalah keadaan di mana salah satu atau kedua syarat keadaan seimbang tidak terpenuhi. Kemungkinan keadaan tidak seimbang ada 3 yaitu:

- Ketiga vektor sama besar tetapi tidak membentuk sudut 120° satu sama lain.
- Ketiga vektor tidak sama besar tetapi membentuk sudut 120° satu sama lain.
- Ketiga vektor tidak sama besar dan tidak membentuk sudut 120° satu sama lain.

Gambar 2.1 Vektor Diagram Arus

Gambar 2.1(a) menunjukkan vektor diagram arus dalam keadaan seimbang. Di sini terlihat bahwa penjumlahan ketiga vektor arusnya (IR, IS, IT) adalah sama dengan nol sehingga tidak muncul arus netral (IN). Sedangkan pada Gambar 2.1(b) menunjukkan vektor diagram a

rus yang tidak seimbang. Di sini terlihat bahwa penjumlahan ketiga vektor arusnya (IR, IS, IT) tidak sama dengan nol sehingga muncul sebuah besaran yaitu arus netral (IN) yang besarnya bergantung dari seberapa besar faktor ketidakseimbangannya.

2.3 Perhitungan Arus Beban Penuh Transformator

Daya transformator bila ditinjau dari sisi tegangan tinggi (primer) dapat dirumuskan sebagai berikut:

$$S = \sqrt{3}$$
. V. I.....(2.1)

Dimana:

S = daya transformator (kVA)

V = tegangan sisi primer transformator (kV)

I = arus jala-jala (A)

Sehingga untuk menghitung arus beban penuh (full load) dapat menggunakan rumus :

$$I_{FL} = \frac{s}{\sqrt{3} \cdot V}$$
 (2.2)

dimana:

 I_{FL} = arus beban penuh (A)

S = daya transformator (kVA)

V = tegangan sisi sekunder transformator (kV)

2.4 Losses (rugi-rugi) Akibat Adanya Arus Netral pada Penghantar Netral Transformator.

Sebagai akibat dari ketidakseimbangan beban antara tiap-tiap fasa pada sisi sekunder trafo (fasa R, fasa S, fasa T) mengalirlah arus di netral trafo. Arus yang mengalir pada penghantar netral trafo ini menyebabkan *losses* (rugi-rugi). *Losses* pada penghantar netral trafo ini dapat dirumuskan sebagai berikut:

$$P_{N} = I_{N}^{2} . R_{N}$$
 (2.3)

dimana:

 $P_N = losses$ pada penghantar netral trafo (watt)

 I_N = arus yang mengalir pada netral trafo (A)

 R_N = tahanan penghantar netral trafo (Ω)

Sedangkan *losses* yang diakibatkan karena arus netral yang mengalir ke tanah (*ground*) dapat dihitung dengan perumusan sebagai berikut :

$$P_G = I_G^2 \cdot R_G$$
....(2.4)

dimana:

 $P_G = losses$ akibat arus netral yang mengalir ke tanah (watt)

 I_G = arus netral yang mengalir ke tanah (A)

 R_G = tahanan pembumian netral trafo (Ω)

2.5 Penyaluran dan Susut Daya

Misalnya daya sebesar P disalurkan melalui suatu saluran dengan penghantar netral. Apabila pada penyaluran daya ini arus-arus fasa dalam keadaan seimbang, maka besarnya daya dapat dinyatakan sebagai berikut:

$$P=3\ .\ [V]\ .\ [I]\ .\ cos\ \varphi.....(2.5)$$
 dengan:

P = daya pada ujung kirim

V = tegangan pada ujung kirim

 $\cos \phi = \text{faktor daya}$

Daya yang sampai ujung terima akan lebih kecil dari P karena terjadi penyusutan dalam saluran.

Jika [I] adalah besaran arus fasa dalam penyaluran daya sebesar P pada keadaan seimbang, maka pada penyaluran daya yang sama tetapi dengan keadaan tak seimbang besarnya arus-arus fasa dapat dinyatakan dengan koefisien a, b dan c sebagai berikut :

$$\lceil I_R \rceil =$$

a [*I*]

$$[I_S] = b[I]$$

$$[I_T] = c [I] \dots (2.6)$$

dengan IR, IS dan IT berturut-turut adalah arus di fasa R, S dan T.

Bila faktor daya di ketiga fasa dianggap sama walaupun besarnya arus berbeda, besarnya daya yang disalurkan dapat dinyatakan sebagai :

$$P = (a + b + c) \cdot [V] \cdot [I] \cdot \cos \phi$$
 (2.7)

Apabila persamaan (7) dan persamaan (5) menyatakan daya yang besarnya sama, maka dari kedua persamaan itu dapat diperoleh persyaratan untuk koefisien a, b, dan c yaitu :

$$a + b + c = 3$$
....(2.8)

dimana pada keadaan seimbang, nilai a = b = c = 1

2.6 Perhitungan Ketidakseimbangan Beban

$$Irata-rata = \frac{IR + IS + IT}{3}$$
 (2.9)

Dimana besarnya arus fasa dalam keadaan seimbang (I) sama dengan besarnya arus rata-rata, maka koefisien a, b dan c diperoleh dengan :

$$IR=a$$
 . $I_{rata\text{-}rata}$ maka: $a=\frac{IR}{Irata\text{-}rata}$

$$IS = b$$
 . $I_{rata-rata}$ $b = \frac{IS}{Irata-rata}$

$$IT = c \; . \; I_{rata\text{-}rata} \qquad \qquad c = \frac{IT}{Irata\text{-}rata}$$

Pada keadaan seimbang, besarnya koefisien a, b dan c adalah 1.

Dengan demikian rata-rata ketidakseimbangan beban (dalam %) adalah :

$$=\frac{\{|a-1|+|b-1|+|c-1|\}}{3}x\ 100\% \dots (2.10)$$

Berdasarkan Prosedur Test Pengukuran unjuk kerja Transformator distribusi yang dilakukan oleh PLN, standar ketidakseimbangan beban yang diizinkan adalah maksimum sebesar 25%. Sedangkan menurut standard IEC ketidakseimbangan beban yang diijinkan adalah 5%.