BAB II TINJAUAN PUSTAKA

Bahan alam merupakan kumpulan dari beberapa sumber kimia yang dapat berasal dari produk metabolisme senyawa sederhana maupun senyawa kompleks (Najib, 2018). Pengembangan obat herbal sampai saat ini masih dilakukan dengan pemanfaatan metabolit sekunder yang berpotensi besar untuk dikembangkan menjadi obat (Saifudin, 2014). Pada umumnya, khasiat tanaman obat disebabkan karena aktivitas senyawa yang terdapat pada suatu tanaman tersebut. Senyawa tersebut adalah metabolit sekunder yang diproduksi oleh tanaman untuk mempertahankan keberadaannya maupun sebagai sistem pertahanan diri suatu tanaman (Rachman *et al.*, 2018).

2.1 Tinjauan Tentang Daun Bungkus (Smilax rotundifolia)

Menurut Linnaeus *et al.*, (1753), kedudukan taksonomi tanaman daun bungkus adalah sebagai berikut:

Kingdom : Plantae

Phylum : Tracheophyta

Class : Angiospermae

Order : Liliales

Family : Smilacaceae

Genus : Smilax

Species : Smilax rotundifolia

Gambar 2. 1 Daun Bungkus (Smilax Rotundifolia)

(Sumber : Dokumentasi Pribadi, 2023)

2.1.1 Morfologi Tanaman Daun Bungkus (Smilax rotundifolia)

Smilax rotundifolia merupakan tanaman berdaun tunggal, bentuk daun

memanjang, ujung daun meruncing, pangkal daun tumpul, tulang daun melengkung, tepi daun rata dan berwarna hujau dan tumbuh secara menjalar. *Smilax rotundifolia* merupakan salah satu tumbuhan yang ditemukan tersebar dan membentuk semak lebat dan menyebar melalui batang tipis di bawah tanah. Tumbuhan ini di yakini memiliki khasiat sebagai obat untuk penyakit sifilis. Tanaman ini tergolong jenis *greenbrier*, yang secara sederhana berarti anggota *genus Smilax* dan menyampaikan karakternya yang hijau dan berduri (Firawati & Pratama, 2018).

2.1.2 Manfaat Tanaman Daun Bungkus (Smilax rotundifolia)

Daun bungkus (*Smilax rotundifolia*) merupakan salah satu tanaman yang banyak dibudidayakan di Indonesia terutama di daerah papua yang tumbuh di daerah pesisir pantai dan dikenal berkhasiat tinggi sebagai obat kejantanan (Firawati & Pratama, 2018).

2.2 Tinjauan Tentang Simplisia

2.2.1 Pengertian Simplisia

Simplisia merupakan bahan alam yang banyak digunakan sebagai bahan baku obat yang belum mengalami proses apapun kecuali dinyatakan lain yaitu bahan yang sudah dikeringkan. Adapun faktor yang dapat mempengaruhi kualitas serta keragaman kandungan kimia dari simplisia diantaranya kondisi tempat tumbuh, iklim, waktu panen serta proses pasca panen dan preparasi akhir. Beberapa parameter spesifik mutu simplisia yang dapat dilakukan dengan menetapkan kadar sari laut air dan etanol untuk menentukan bahan baku obat tersebut dapat larut dalam pelarut air atau pelarut organik(Febrianti *et al.*, 2019)

2.2.2 Pengeringan

Pengeringan merupakan langkah penting dalam pengolahan tumbuhan obat, karena pengeringan dapat mempengaruhi kualitas produk yang dihasilkan. Pengeringan dilakukan untuk menjaga simplisia tidak rusak dan dapat disimpan dalam jangka waktu yang lama (Syafrida *et al.*, 2018)

2.2.3 Pembuatan Serbuk

Pembuatan serbuk daun bungkus bertujuan untuk mempermudah proses ekstraksi. Karena semakin kecil bentuknya semakin besar luas permukaannya,

sehingga proses penyarian akan semakin efektif.

2.3 Tinjauan Tentang Ekstraksi

Aktivitas suatu ekstrak tergantung pada suatu senyawa yang terkandung, semakin tinggi kadar senyawa aktif maka semakin baik pula aktivitasnya. Pemilihan metode ekstraksi sangat berperan terhadap aktivitas suatu ekstrak. Metode ektraksi bukan hanya dapat meningkatkan aktivitas tetapi juga dapat menghilangkan aktivitas suatu ekstrak karena beberapa simplisia bersifat relatif tidak stabil dan mudah terurai(Hasnaeni *et al.*, 2019). Pemilihan metode ekstraksi memiliki pengaruh terhadap stabilitas dan kadar senyawa yang tersari dalam pelarut (Febrianti *et al.*, 2019). Metode ekstraksi yang paling sederhana yaitu metode ekstrasi maserasi.

2.3.1 Maserasi

Proses penyarian menggunakan metode maserasi karena metode ini sederhana dan cepat tetapi sudah dapat menyari zat aktif simplisia dengan maksimal. Keuntungan utama dari metode ini ialah tidak dilakukan dengan pemanasan sehingga dapat mencegah rusak atau hilangnya zat aktif yang ingin disari. Proses penyarian diawali dengan proses pembasahan. Proses pembasahan menggunakan pelarut ini dimaksudkan untuk memberikan kesempatan yang sebesar-besarnya kepada cairan penyari untuk masuk ke pori-pori simplisia sehingga mempermudah proses penyarian selanjutnya (Sa'adah & Nurhasnawati, 2015) Uji Bebas Etanol Pengujian ini dilakukan dengan mereaksikan kalium dikromat (K2Cr2O7) dan etanol dalam suasana asam. Jika larutan bebas etanol maka tidak terjadi perubahan warna kan terbentuk warna, tetapi jika larutan ekstrak mengandung etanol maka campuran akan terbentuk warna biru (Azis et al., 2017).

2.4 Tinjauan Tentang Skrining Fitokimia

Skirining fitokimia merupakan salah satu cara yang dapat dilakukan untuk mengidentifikasi kandungan senyawa metabolit sekunder suatu bahan alam. Skrining fitokimia merupakan tahap pendahuluan yang dapat memberikan gambaran mengenai kandungan senyawa tertentu dalam bahan alam yang akan diteliti (Vifta & Advistasari, 2018). Skrining fitokimia dapat dilakukan baik secara

kualitatif, semi kualitatif, maupun kuantitatif sesuai dengan tujuan yang diinginkan. Metode skrining fitokimia secara kualitatif dapat dilakukan melalui reaksi warna dengan menggunakan suatu pereaksi tertentu. Hal penting yang mempengaruhi dalam proses skrining fitokimia adalah pemilihan pelarut dan metode ekstraksi. Pelarut yang tidak sesuai memungkinkan senyawa aktif yang diinginkan tidak dapat tertarik secara baik dan sempurna (Azizah, 2021). Pemeriksaan senyawa fitokimia dapat membantu langkahfitofarmakologi yaitu melalui seleksi awal pemeriksaan tumbuhan yang akan digunakan sebagai obat tradisional. Pemeriksaan senyawa fitokimia membuktikan ada dan tidaknya senyawa kimia tertentu dalam tumbuhan yang dapat dikaitkan dengan aktivitas biologinya (Farnsworth, 1966).

2.4.1 Alkaloid

Pada pengujian alkaloid dilakukan penambahan HCl sebelum ditambahkan pereaksi karena alkaloid bersifat basa sehingga diekstrak dengan pelarut yang mengandung asam (Harborne, 1996). Alkaloid diperoleh hasil positif dengan terbentuknya endapan dari penggantian lignan (Simaremare, 2014). Endapan terbentukkarena atom nitrogen yang mempunyai pasangan elektron bebas pada alkaloid mengganti ion iod dalam pereaksi Mayer dan Dragendroff melalui ikatan kovalen. Jika tidak terbentuknya endapan berwarna putih pada endapan reagen Mayer, cokelat kemerahan pada pereaksi Wagner, atau jingga pada pereaksi Dragendroff maka akan disimpulkan bahwa ekstrak tidak mengandung alkaloid (McMurry & FayR.C; Marliana et al., 2005; Sangi et al., 2012).

2.4.2 Terpenoid dan Steroid

Pengujian steroid dan terpenoid didasarkan pada kemampuan senyawa untuk membentuk warna jingga dengan adanya penambahan H₂SO₄ pekat dan pelarut asetat glasial pada ekstrak (Sangi *et al.*, 2012). Terjadi perubahan warna merah jingga atau ungu untuk terpenoid dan biru untuk steroid (Simaremare, 2014).

2.4.3 Saponin

Saponin merupakan senyawa yang memiliki gugus hidrofilik dan hidrofob. Saponin pada saat digojok terbentuk buih karena adanya gugus hidrofil yang berikatan dengan air sedangkan hidrofob akan berikatan dengan udara. Pada

umumnya jika hasilpositif maka penambahan HCl 2N bertujuan untuk menambah kepolaran sehingga gugus hidrofil akan berikatan lebih stabil dan buih yang terbentuk menjadi stabil (Simaremare, 2014).

2.4.4 **Tanin**

Pereaksi besi (III) klorida digunakan secara luas untuk mengidentifikasi senyawa tanin. Pengujian dilakukan dengan menambahkan FeCl₃ 10% yang akan menimbulkan warna biru tua, biru kehitaman atau hitam kehijauan (Sangi *et al.*, 2012;Artini *et al.*, 2013).

2.4.5 Flavonoid

Penambahan serbuk magnesium dan asam klorida pada pengujian flavonoid akan menyebabkan tereduksinya senyawa flavonoid yang ada sehingga menimbulkan reaksi warna merah yang merupakan ciri adanya flavonoid (Robinson, 1995).

2.5 Uji Sitotoksik

Senyawa sitotoksik adalah suatu senyawa atau zat yang dapat menghancurkan sel normal dan sel kanker, dan juga dapat menghambat pertumbuhan sel tumor malignan (Marliza & Oktaviani, 2021). Uji yang dilakukan untuk mengetahui potensi antikanker adalah uji sitotoksik dengan metode *Brine Shrimp Lethality Test* (BSLT). BSLT adalah salah satu metode dalam pengujian efek sitotoksik ekstrak tanaman terhadap larva *Artemia salina* Leach. *Artemia salina* Leach. *Meremia salina* Leach. Merupakan sejenis udang primitif yang digunakan sebagai hewan coba untuk uji toksisitas bahan alam dengan metode BSLT (Harli, 2016). Berdasarkan metode BSLThasil uji ekstrak tumbuhan dikatakan toksik jika memiliki LC50 < 1000 ppm (Sari *et al.*, 2020).

2.6 Tinjauan Tentang Metode Brine Shrimp Lethality Test (BSLT)

Uji pendahuluan yang digunakan untuk mendeteksi aktivitas antikanker yaitu uji sitotoksik dengan menggunakan bahan alam sebagai bahan uji dan larva *Artemia salina* Leach. sebagai hewan uji dengan metode *Brine Shrimp Lethality Test* (BSLT), metode ini ditujukan terhadap tingkat mortalitas larva udang *Artemia salina* Leach. yang disebabkan oleh ekstrak uji. Hasil yang diperoleh dihitung sebagai nilai LC₅₀ (*Lethal Concentration* 50) yaitu jumlah dosis atau

konsentrasi ekstrak uji yang dapat menyebabkan kematian larva udang sejumlah 50% setelah masa inkubasi 24 jam. Suatu ekstrak dapat dikatakan memiliki bioktivitas jika nilai LC₅₀ < 1000 μg/mLkarena memiliki sifat toksik pada rentang nilai tersebut (Meyer *et al.*, 1982). LC₅₀ menunjukkan nilai konsentrasi yang menghasilkan hambatan poliferasi sel sebesar 50% dan menunjukkan potensi ketoksikan suatu senyawa terhadap sel. Nilai ini merupakan patokan untuk melakukan uji pengamatan kenetika sel, nilai LC₅₀ menunjukkan potensi suatu senyawa sebagai sitotoksik semakin besar harga LC₅₀ maka senyawa tersebut semakin tidak toksik (Agustina *et al.*, 2017).

Telur *Artemia salina* Leach. akan menetas menjadi larva setelah 24 jam. Larva *Artemia salina* Leach. yang baik digunakan untuk uji BSLT yaitu yang berumur 48 jam sebab jika lebih dari 48 jam dikhawatirkan kematian *Artemia salina* Leach. bukan disebabkan oleh toksisitas melainkan oleh terbatasnya persediaan makanan (Arianta *et al.*, 2022). Toksisitas senyawa aktif dalam ekstrak tumbuhan ditentukan berdasarkan kematian larva *Artemia salina* Leach. Data mortalitas larva *Artemia salina* Leach. merupakan konsentrasi senyawa yang mematikan 50% dari populasi hewan uji.

Ekstrak dengan nilai < 30 ppm maka ekstrak sangat toksik dan berpotensi mengandung senyawa bioaktif antikanker (Meyer *et al.*, 1982) menyebutkan tingkat toksisitas suatu ekstrak.

Tabel 2. 1 Kriteria Kekuatan Toksisitas (Meyer *et al.*, 1982)

Toksisitas	Konsentrasi (ppm)
Sangat toksik	≤ 30 ppm
Toksik	31 ppm – 1000 ppm
Tidak Toksik	> 1000 ppm

2.7 Tinjauan tentang Hewan Uji

Menurut Mujiman (1995), *Artemia salina* Leach. adalah udang tingkat rendah yang hidup sebagai zooplankton. *Artemia salina* Leach. pada tahun 1778 diberi nama *Cancer salinus*, yang kemudian diubah menjadi *Artemia salina* pada tahun 1819 oleh Leach. Klasifikasi *Artemia salina* Leach. pada dunia hewan

adalah sebagai berikut:

Kingdom : Animal

Phylum : Arthropoda
Class : Crustacea

Order : Anostraca

Family : Arthemidae

Genus : Artemia

Species : Artemia salina Leach.

Gambar 2. 2 Larva *Artemia salina* Leach. (Adi *et al.*, 2006)

2.7.1 Morfologi Artemia salina Leach.

Tingkat hidup *Artemia salina* Leach. mengalami beberapa tingkatan, tetapi secara jelas dapat dilihat dalam 3 bentuk yang sangat berlainan yaitu bentuk telur, nauplius (larva) dan artemia dewasa. Pada saat air laut menguap, partikel-partikel yang berwarna cokelat, berdiameter 0.2-0.3 mm akan naik ke permukaan oleh angin hingga ke tepian laut. Partikel tersebut merupakan telur-telur yang inaktif atau tidur dari *Artemia salina* Leach. Sepanjang telur-telur tersebut terhidrasi dan dalam keadaan *dizpause*, akan memiliki ketahanan dan kestabilan dalam penyimpanan yang lama. Jika telur-telur tersebut (yang embrionya dalam keadaan *dizpause*) direndam dalam larutan bergaram (air laut), telur akan menyerap air laut hingga menggembung. Proses penyerapan ini berlangsung secara hiperosmotik yaitu adanya tekanan osmosis di dalam telur yang lebih tinggi daripada luarnya (Mudjiman, 2004).

Setelah telur menggembung dan metabolisme berlangsung, untuk mencapai

tingkatan nauplius (larva) dibutuhkan waktu sekitar 15 jam. Terjadinya pemecahan cangkang telur yang keras dibantu oleh enzim penetasan pada pH lebih dari 8. Sekitar 17 jam perendaman, embrio yang keluar dari cangkang yang masih dibungkus oleh selaput penetasan tumbuh terus hingga akhirnya keluar dari selaputnya menjadi makhluk hidup baru yaitu waktu 19 jam hingga rata-rata berkisar 24-36 jam. Dalam pengembangan selanjutnya, banyak mengalami metamorfosis. Pada tingkatan Instar I, kandungan energi masih cukup tinggi. Sekitar 24 jam kemudian, larva sudah berubah menjadi Instar II mulai mempunyai mulut, saluran pencernaan dan dubur. Oleh karena itu, larva sudah mencari makanan.

Cahaya minimal diperlukan dalam proses penetasan dan akan sangat menguntungkan bagi pertumbuhan larva. Lampu standar oksigen harus dijaga dengan baik untuk pertumbuhan *Artemia salina* Leach. Dengan suplai oksigen yang baik, *Artemia salina* Leach. akan berwarna kuning atau merah jambu. Warna ini bisa berubah menjadi kehijauan apabila *Artemia salina* Leach. banyak mengkonsumsi mikro alga.

Pada kondisi yang ideal seperti ini, *Artemia salina* Leach. akan tumbuh dan berkembang biak dengan cepat. Apabila kadar oksigen dalam air rendah, dan air banyak mengandung bahan organik, atau apabila salintas meningkat. *Artemia salina* Leach. akan memakan bakteri. Pada kondisi demikian mereka akan memproduksi hemoglobin sehingga tampak berwarna merah atau oranye. Apabila keadaan ini terus berlanjut mereka akan mulai memproduksi sista (Adi *et al.*, 2006).

Tubuh terbagi atas bagian kepala, dada dan perut. Pada bagian kepala terdapat 2 tungkai mata, 2 antena dan 2 antenula. Dada terbagi atas 11 segmen yang masing-masing mempunyai sepasang kaki renang, sedangkan perut terbagi atas 8 segmen. *Artemia salina* Leach. dewasa bentuknya telah sempurna. Reproduksi *Artemia salina* Leach. dapat dengan bertelur atau dengan melahirkan anak. Pergantian reproduksi ini dimungkinkan oleh jumlah klorofil yang tinggi dalam makanannya menyebabkan reproduksi dengan telur, dan sebaliknya akan menyebabkan reproduksi dengan melahirkan anak (Mudjiman, 2004). Kandungan kimia yang terkandung dalam tubuh *Artemia salina* Leach. adalah protein dan

asam lemak yang tinggi. Nilai nutrisi *Artemia salina* Leach. dewasa mempunyai keunggulan yaitu kandungan proteinnya meningkat dari rata-rata 47% pada nauplius menjadi 60% pada *Artemia salina* Leach dewasa yang telah dikeringkan (Wibowo *etal.*, 2013).

2.8 Tinjauan tentang Pelarut

Peningkatan mutu sediaan obat dari bahan alam didukung oleh penggunaan ekstrak sebagai bahan baku utama yang harus bermutu secara fisik dan kandungan kimianya. Untuk mendapatkan kandungan zat aktif yang tinggi, maka perlu dilakukan optimasi jenis pelarut. Jenis pelarut akan menentukan jenis zat yang tersari sesuai dengan polaritasnya (Sa'adah & Nurhasnawati, 2015).

2.8.1 Etanol

Etanol dipertimbangkan sebagai cairan penyari karena lebih efektif, kapangdan kuman sulit tumbuh dalam etanol 20% ke atas. Selain itu, etanol tidak beracun, netral, absorbsinya baik. Etanol dapat bercampur dengan air pada segala perbandingan, panas yang diperlakukan untuk pemekatan lebih sedikit. Etanol merupakan pelarut yang bersifat semi polar, dapat membentuk ikatan hidrogen antara molekul-molekulnya. Etanol, disebut juga etil alkohol, alkohol murni, alkohol absolut,atau alkohol, adalah sejenis cairan yang mudah menguap, mudah terbakar dan tak berwarna (Sa'adah & Nurhasnawati, 2015). Etanol termasuk ke dalam alkohol rantai tunggal, dengan rumus kimia C₂H₅OH dan rumus empiris C₂H₆O.

Gambar 2.1 Struktur Etanol

(Sa'adah & Nurhasnawati, 2015)