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BAB II  

LANDASAN TEORI 

 

2.1 Himpunan 

Definisi 2.1 (Munir, 2010) 

Himpunan adalah sekumpulan objek yang berbeda tetapi memiliki sifat yang dapat 

didefinisikan dengan jelas.  

Objek-objek yang terdapat di dalam suatu himpunan disebut sebagai elemen 

atau anggota himpunan. Himpunan dinotasikan dengan huruf kapital, seperti 

𝐴, 𝐵, 𝐶, dan sebagainya. Sedangkan elemen atau anggota himpunan dinotasikan 

dengan huruf kecil, seperti 𝑎, 𝑏, 𝑐,  dan sebagainya. Elemen atau anggota suatu 

himpunan ditulis di antara kurung kurawal dan dipisahkan dengan tanda koma. 

Misalkan terdapat suatu himpunan 𝑆  dengan anggota himpunan 𝑎  dan 𝑏 , maka 

himpunan 𝑆  dapat ditulis sebagai 𝑆 = {𝑎, 𝑏}  dan elemen-elemennya dinotasikan 

sebagai 𝑎, 𝑏 ∈ 𝑆 dibaca 𝑎 dan 𝑏 elemen atau anggota dari himpunan 𝑆. 

 

2.2 Fungsi 

Definisi 2.2 (Varberg dkk., 2010) 

Sebuah fungsi 𝑓 adalah suatu aturan korespondensi yang menghubungkan setiap 

obyek 𝑥 dalam satu himpunan, yang disebut daerah asal (domain), dengan sebuah 

nilai tunggal 𝑓(𝑥)  dari suatu himpunan kedua. Himpunan nilai yang diperoleh 

secara demikian disebut daerah hasil fungsi (range). 

Suatu fungsi dapat dinotasikan dengan sebuah huruf tunggal seperti 𝑓 (atau 𝑔 

atau 𝐹). 𝑓(𝑥) dibaca “𝑓 dari 𝑥” atau “𝑓 pada 𝑥”, menunjukkan nilai yang diberikan 

oleh 𝑓 kepada 𝑥. Jadi, jika 𝑓(𝑥) = 𝑥3 − 4, maka 

 

𝑓(2) = 23 − 4 = 4 

𝑓(𝑎) = 𝑎3 − 4 

𝑓(𝑎 + ℎ) = (𝑎 + ℎ)3 − 4 = 𝑎3 + 3𝑎ℎ2 + 3𝑎2ℎ + ℎ3 − 4 

 

untuk sebuah persamaan berbentuk 𝑦 = 𝑓(𝑥) , 𝑥  disebut variabel bebas dan 𝑦 

disebut variabel terikat. 
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Definisi 2.3 (Varberg dkk., 2010) 

Misalkan 𝑎 bilangan positif bukan 1, Maka 

 

𝑦 = log𝑎 𝑥 ⇔ 𝑥 = 𝑎𝑦  

 

Sifat-sifat fungsi logaritma umum : 

1. log𝑒 𝑥 = ln 𝑥 

2. log𝑎 𝑥 =
ln𝑥

ln𝑎
 

 

Definisi 2.4 (Varberg dkk., 2010) 

Fungsi logaritma alami dinyatakan oleh ln, didefinisikan oleh 

 

ln 𝑥 = ∫
1

𝑡

𝑥

1

𝑑𝑡, 𝑥 > 0 

 

daerah asal fungsi logaritma alami adalah himpunan bilangan real positif. 

Sifat-sifat fungsi logaritma alami : 

Jika 𝑎 dan 𝑏 bilangan-bilangan positif dan 𝑟 sebuah bilangan rasional, maka 

1. ln 1 = 0 

2. ln
𝑎

𝑏
= ln𝑎 − ln 𝑏 

3. ln 𝑎𝑏 = ln 𝑎 + ln 𝑏 

4. ln 𝑎𝑟 = 𝑟 ln 𝑎 

 

Definisi 2.5 (Varberg dkk., 2010) 

Untuk 𝑎 > 0 dan bilangan real bilangan 𝑥, 

 

𝑎𝑥 = 𝑒𝑥 ln𝑎 

 

Sifat-sifat fungsi eksponen umum : 

Jika 𝑎 > 0, 𝑏 > 0, dan 𝑥 dan 𝑦 bilangan real, maka 

1. 𝑎𝑥𝑎𝑦 = 𝑎𝑥+𝑦 
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2. (𝑎𝑥)𝑦 = 𝑎𝑥𝑦  

3. (
𝑎

𝑏
)
𝑥

=
𝑎𝑥

𝑏𝑥 

4. 
𝑎𝑥

𝑎𝑦 = 𝑎𝑥−𝑦 

5. (𝑎𝑏)𝑥 = 𝑎𝑥𝑏𝑥 

 

Definisi 2.6 (Varberg dkk., 2010) 

Invers ln disebut fungsi eksponen alami dan dinyatakan oleh exp, jadi 

 

𝑥 = exp 𝑦 ⇔ 𝑦 = ln 𝑥 

 

Sifat-sifat fungsi eksponen alami: 

1. Huruf 𝑒 menyatakan bilangan real positif unik demikian sehingga ln 𝑒 = 1 

2. Untuk semua nilai 𝑥 (rasional maupun irrasional), 𝑒𝑥 = exp𝑥 

3. 𝑒ln𝑥 = 𝑥, 𝑥 > 0 

4. ln(𝑒𝑦) = 𝑦, untuk semua 𝑦 

 

2.3 Fungsi Dua Variabel 

Misalkan suatu fungsi 𝑓 merupakan fungsi dengan dua variabel, maka fungsi 

𝑓 memadankan setiap pasangan terurut (𝑥, 𝑦) pada suatu himpunan 𝐷 dari bidang 

dengan bilangan real (tunggal) 𝑓(𝑥, 𝑦). Himpunan 𝐷 disebut daerah asal fungsi. 

(Varberg dkk., 2011) 

 

 

Gambar 2.1 Fungsi Dua Variabel 
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Grafik dari fungsi 𝑓 dengan dua variabel atau grafik persamaan 𝑧 = 𝑓(𝑥, 𝑦). 

Biasanya grafik berupa suatu permukaan seperti Gambar 2.1, karena setiap (𝑥, 𝑦) 

didaerah asal hanya berpadanan dengan satu nilai 𝑧, maka setiap garis tegaklurus 

bidang-𝑥𝑦 memotong permukaan pada paling banyak satu titik. 

 

Contoh 2.1 

Misalkan 𝑓(𝑥, 𝑦) = 𝑥2 + 3𝑦2. Tentukan nilai 𝑓(−1,4). 

 

Penyelesaian 

 

𝑓(−1,4) = (−1)2 + 3(4)2 = 1 + 3(16) = 49 

 

2.4 Limit 

Definisi 2.7 (Varberg dkk., 2010) 

Untuk mengatakan bahwa lim
𝑥→𝑐

𝑓(𝑥) = 𝐿 , berarti bahwa ketika 𝑥  dekat tetapi 

berlainan dari 𝑐, maka 𝑓(𝑥) dekat ke 𝐿. 

 

Contoh 2.2 

Carilah lim
𝑥→3

(4𝑥 − 5) 

 

Penyelesaian 

Ketika 𝑥 dekat 3; maka 4𝑥 − 5 dekat terhadap 4 × 3 − 5 = 7. Dapat ditulis 

 

lim
𝑥→3

(4𝑥 − 5) = 7 

 

Definisi 2.8 (Varberg dkk., 2010) 

Untuk mengatakan bahwa lim
𝑥→𝑐+

𝑓(𝑥) = 𝐿 berarti bahwa ketika 𝑥 dekat tetapi pada 

sebelah kanan 𝑐, maka 𝑓(𝑥) dekat ke-𝐿. Demikian pula, untuk mengatakan bahwa 

lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿 berarti bahwa ketika 𝑥 dekat tetapi pada sebelah kiri 𝑐, maka 𝑓(𝑥) 

adalah dekat ke-𝐿. 
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2.5 Turunan 

Definisi 2.9 (Varberg dkk., 2010) 

Turunan fungsi 𝑓  adalah fungsi lain 𝑓′ (dibaca “𝑓  aksen”) yang nilainya pada 

sebarang bilangan 𝑐 adalah 

 

𝑓′(𝑐) = lim
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

 

Asalkan limit ini ada dan bukan ∞ atau −∞. 

 

Contoh 2.3 

Misalkan 𝑓(𝑥) = 13𝑥 − 6. Carilah 𝑓′(4). 

 

Penyelesaian 

 

𝑓′(4) = lim
ℎ→0

𝑓(4 + ℎ) − 𝑓(4)

ℎ
 

= lim
ℎ→0

13(4 + ℎ) − 6 − (13(4) − 6)

ℎ
 

= lim
ℎ→0

13ℎ

ℎ
 

= lim
ℎ→0

13 = 13 

 

Sifat-sifat turunan: 

1. Jika 𝑓(𝑥) = 𝑘, dengan 𝑘 suatu konstanta maka untuk sebarang 𝑥, 𝑓′(𝑥) = 0 

2. Jika 𝑓(𝑥) = 𝑥, maka 𝑓′(𝑥) = 1 

3. Jika 𝑓(𝑥) = 𝑥𝑛, dengan 𝑛 bilangan bulat positif, maka 𝑓′(𝑥) = 𝑛𝑥𝑛−1 

Jika 𝑘  suatu konstanta dan fungsi 𝑓  dan 𝑔  adalah fungsi-fungsi yang 

terdiferensiasikan, maka 

4. (𝑘𝑓)′(𝑥) = 𝑘 ∙ 𝑓′(𝑥) 

5. (𝑓 + 𝑔)′(𝑥) = 𝑓′(𝑥) + 𝑔′(𝑥) 

6. (𝑓 − 𝑔)′(𝑥) = 𝑓′(𝑥) − 𝑔′(𝑥) 

7. (𝑓 ∙ 𝑔)′(𝑥) = 𝑓(𝑥)𝑔′(𝑥) + 𝑔(𝑥)𝑓′(𝑥) 
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8. Jika 𝑓  dan 𝑔  adalah fungsi-fungsi yang terdifierensiasikan dengan 𝑔(𝑥) ≠ 0, 

maka (
𝑓

𝑔
)
′
(𝑥) =

𝑔(𝑥)𝑓′(𝑥)−𝑓(𝑥)𝑔′(𝑥)

𝑔2(𝑥)
 

 

2.6 Turunan Parsial 

Misalkan 𝑓  adalah suatu fungsi dua variabel 𝑥  dan 𝑦 . Jika 𝑦  dijaga agar tetap 

konstan, asumsikan 𝑦 = 𝑦0, maka 𝑓(𝑥, 𝑦0) adalah fungsi satu variabel 𝑥. Turunan 

dari 𝑓  di 𝑥 = 𝑥0  disebut turunan parsial 𝑓  terhadap 𝑥  di (𝑥0, 𝑦0) dan dinotasikan 

sebagai 𝑓𝑥(𝑥0, 𝑦0). (Varberg dkk., 2011) Jadi, 

 

𝑓𝑥(𝑥0, 𝑦0) = lim
∆𝑥→0

𝑓(𝑥0 + ∆𝑥, 𝑦0) − 𝑓(𝑥0, 𝑦0)

∆𝑥
 

 

Dengan cara serupa, turunan parsial 𝑓 terhadap y di (𝑥0, 𝑦0) dinotasikan sebagai 

𝑓𝑦(𝑥0, 𝑦0) dengan 

 

𝑓𝑦(𝑥0, 𝑦0) = lim
∆𝑦→0

𝑓(𝑥0, 𝑦0 + ∆𝑦) − 𝑓(𝑥0, 𝑦0)

∆𝑦
 

 

Contoh 2.4 

Carilah 𝑓𝑥(1,2) dan 𝑓𝑦(1,2) jika 𝑓(𝑥, 𝑦) = 𝑥2𝑦 + 3𝑦3 

 

Penyelesaian 

Untuk mencari 𝑓𝑥(𝑥, 𝑦) , maka asumsikan 𝑦  sebagai suatu konstanta kemudian 

turunkan 𝑓 terhadap 𝑥, sehingga diperoleh 

𝑓𝑥(𝑥, 𝑦) = 2𝑥𝑦 + 0 

 

 

Untuk (𝑥, 𝑦) = (1,2), maka 

 

𝑓𝑥(1,2) = 2 ∙ 1 ∙ 2 = 4 
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Dengan cara yang serupa, diperoleh 

 

𝑓𝑦(𝑥, 𝑦) = 𝑥2 + 9𝑦2 

 

Untuk (𝑥, 𝑦) = (1,2), maka 

 

𝑓𝑦(1,2) = 12 + 9 ∙ 22 = 37 

 

2.7 Notasi Sigma 

Definisi 2.10 (Varberg dkk., 2010) 

Notasi sigma atau ∑ menyatakan penjumlahan semua bilangan berbentuk seperti 

yang ditunjukkan dengan indeks i, dimana indeks i terus meningkat dimulai dari 

bilangan bulat yang berada di bawah ∑ dan berakhir dengan bilangan bulat yang 

berada diatas ∑ seperti yang ditunjukkan sebagai berikut: 

 

∑𝑎𝑖

5

𝑖=1

= 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 

 

Sifat-sifat sigma: 

Jika 𝑐 suatu konstanta, maka 

1. ∑ 𝑐𝑛
𝑖=1 = 𝑛𝑐 

2. ∑ 𝑐𝑎𝑖
𝑛
𝑖=1 = 𝑐 ∑ 𝑎𝑖

𝑛
𝑖=1  

3. ∑ (𝑎𝑖 + 𝑏𝑖)
𝑛
𝑖=1 = ∑ 𝑎𝑖

𝑛
𝑖=1 + ∑ 𝑏𝑖

𝑛
𝑖=1  

4. ∑ (𝑎𝑖 − 𝑏𝑖)
𝑛
𝑖=1 = ∑ 𝑎𝑖

𝑛
𝑖=1 − ∑ 𝑏𝑖

𝑛
𝑖=1  

 

2.8 Integral 

Definisi 2.11 (Varberg dkk., 2010) 

Kita sebut 𝐹 suatu anti-turunan 𝑓 pada interval 𝐼 jika 𝐹′(𝑥) = 𝑓(𝑥) untuk semua 𝑥 

dalam 𝐼. 

 

Contoh 2.5 

Carilah anti-turunan umum dari 𝑓(𝑥) = 𝑥2 pada (−∞, ∞). 
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Penyelesaian 

Akan dicari suatu fungsi 𝐹  yang memenuhi 𝐹′(𝑥) = 𝑥2  untuk semua 𝑥  real. 

Berdasarkan diferensiasi, fungsi 𝐹(𝑥) = 𝑥3 tidak akan memenuhi, karena turunan 

dari 𝐹(𝑥) adalah 3𝑥2. Tetapi nilai 𝐹′(𝑥) = 3𝑥2 merujuk pada 𝐹(𝑥) =
1

3
𝑥3, karena 

turunan dari 𝐹(𝑥) =
1

3
𝑥2  memenuhi 𝐹′(𝑥) =

1

3
∙ 3𝑥2 = 𝑥2 . Sehingga diperoleh 

anti-turunan umumnya yaitu 
1

3
𝑥3 + 𝑐. 

 

Sifat-sifat integral: 

Misalkan 𝑓  dan 𝑔  mempunyai anti-turunan (integral tak tentu) dan misalkan 𝑘 

suatu konstanta. Maka 

1. ∫𝑘𝑓(𝑥) 𝑑𝑥 = 𝑘 ∫ 𝑓(𝑥)𝑑𝑥 

2. ∫[𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥 = ∫𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 

3. ∫[𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥 = ∫𝑓(𝑥)𝑑𝑥 − ∫ 𝑔(𝑥) 𝑑𝑥 

 

Definisi 2.12 (Varberg dkk., 2010) 

Misalkan 𝑓 suatu fungsi yang didefinisikan pada interval tertutup [𝑎, 𝑏]. Jika  

 

lim
||𝑝||→0

∑𝑓(𝑥̅𝑖)∆𝑥𝑖

𝑛

𝑖=1

 

 

ada, asumsikan 𝑓  adalah fungsi yang terintegrasikan pada [𝑎, 𝑏] . Lebih lanjut 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, disebut integral tentu 𝑓 dari 𝑎 ke 𝑏, ditulis sebagai 

 

∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= lim
||𝑝||→0

∑𝑓(𝑥̅𝑖)∆𝑥𝑖

𝑛

𝑖=1

 

 

Sifat-sifat integral tentu: 

1. ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑎
= 0 

2. ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= −∫ 𝑓(𝑥)𝑑𝑥

𝑎

𝑏
, 𝑎 > 𝑏 
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3. ∫ 𝑓(𝑥)𝑑𝑥
𝑐

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑏
 

Misalkan 𝑓 dan 𝑔 terintegrasikan pada [𝑎, 𝑏] dan 𝑘 adalah konstanta. Maka 

4. ∫ 𝑘𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑘 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 

5. ∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
+ ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
 

6. ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
− ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
 

 

2.9 Peluang dan Ruang Sampel 

Definisi 2.14 (Walpole d Myers, 1995) 

Himpunan semua kemungkinan hasil yang memungkinkan dari suatu percobaan 

statistika disebut ruang sampel dan dilambangkan dengan huruf 𝑆. 

Setiap kemungkinan hasil dalam suatu ruang sampel disebut unsur atau 

anggota ruang sampel tersebut atau biasanya disebut dengan titik sampel. Jika 

banyaknya unsur ruang sampel berhinggass, maka unsur-unsur tersebut dapat 

didaftarkan dalam bentuk himpunan. Jadi ruang sampel 𝑆  dari percobaan 

pelemparan sekeping uang logam yaitu G (gambar) dan A (angka), atau dapat 

ditulis sebagai 

 

𝑆 = {𝐺, 𝐴} 

 

Definisi 2.15 (Walpole, 2005) 

Suatu kejadian adalah himpunan bagian dari ruang sampel. 

 

Definisi 2.16 (Walpole & Myers, 1995) 

Peluang suatu kejadian 𝐴  adalah jumlah peluang semua titik sampel dalam 𝐴 . 

Dimana, 

 

0 ≤ 𝑃(𝐴) ≤ 1, 𝑃(∅) = 0, 𝑃(𝑆) = 1. 

 

Teorema 2.1 (Walpole, 2005) 

Jika banyaknya ruang sampel dinotasikan dengan 𝑛(𝑆) dan banyaknya kejadian 

dinotasikan dengan 𝑛(𝐴). Maka peluang kejadian 𝐴 adalah 
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𝑃(𝐴) =
𝑛(𝐴)

𝑛(𝑆)
 

 

2.10 Peubah Acak 

Definisi 2.17 (Walpole, 2005) 

Suatu fungsi yang nilainya berupa bilangan riil yang ditentukan oleh setiap unsur 

dalam ruang sampel disebut peubah acak. 

 

Definisi 2.18 (Walpole, 2005) 

Bila suatu ruang sampel mengandung jumlah titik sampel yang berhingga atau suatu 

barisan unsur yang tidak pernah berakhir tetapi sama banyaknya dengan bilangan 

cacah, maka ruang itu disebut ruang sampel diskret. 

 

Definisi 2.19 (Walpole, 2005) 

Bila suatu ruang sampel mengandung tak hingga banyaknya titik sampel yang sama 

dengan banyaknya dengan banyaknya titik pada sebuah ruas garis, maka ruang itu 

disebut ruang sampel kontinu. 

 

2.11  Populasi dan Sampel 

Definisi 2.20 (Walpole, 2005) 

Populasi adalah keseluruhan pengamatan yang menjadi perhatian kita. 

Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi. 

 

Definisi 2.21 (Walpole, 2005) 

Sampel adalah suatu himpunan bagian dari populasi. 

 

2.12 Distribusi Probabilitas 

Definisi 2.22 (Walpole dan Myers, 1995) 

Misalkan 𝑋  adalah peubah acak diskret, maka fungsi 𝑓(𝑥)  disebut dengan 

distribusi probabilitas atau fungsi kepadatan peluang dari sebuah peubah acak 𝑋, 

yang mempunyai syarat-syarat sebagai berikut: 

1. 𝑓(𝑥) ≥ 0 
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2. ∑ 𝑓(𝑥)𝑥 = 1 

3. 𝑃(𝑋 = 𝑥) = 𝑓(𝑥) 

 

Fungsi distribusi kumulatif dari 𝑋  dinotasikan dengan 𝐹(𝑥) , dan didefinisikan 

sebagai berikut: 

 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑𝑓(𝑡)

𝑡≤𝑥

, −∞ < 𝑥 < ∞ 

 

Definisi 2.23 (Walpole dan Myers, 1995) 

Misalkan fungsi 𝑓(𝑥) adalah fungsi kepadatan peluang dari peubah acak kontinu 

𝑋, yang didefinisikan pada himpunan semua bilangan real, jika 

1. 𝑓(𝑥) ≥ 0 untuk semua 𝑥 ∈ (−∞,∞) 

2. ∫ 𝑓(𝑥) 𝑑𝑥
∞

−∞
= 1 

3. 𝑃(𝑎 < 𝑋 < 𝑏) = ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
 

 

Fungsi distribusi kumulatif dari 𝑋  dinotasikan dengan 𝐹(𝑥) , dan didefinisikan 

sebagai berikut: 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡

𝑥

−∞

, −∞ < 𝑥 < ∞ 

 

 

Gambar 2.2 Grafik Fungsi Kepadatan Peluang Distribusi Gamma 
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Gambar 2.2 menunjukkan grafik fungsi kepadatan peluang distribusi Gamma 

dengan nilai parameter skala konstan pada 2 dan nilai parameter bentuk bergerak 

dari 1 sampai 2.5. 

 

 

Gambar 2.3 Grafik Fungsi Distribusi Kumulatif Distribusi Gamma 

 

Gambar 2.3 menunjukkan grafik fungsi distribusi kumulatif distribusi Gamma 

dengan nilai parameter skala konstan pada 2 dan nilai parameter bentuk bergerak 

dari 1 sampai 2.5. 

 

2.13 Beberapa Distribusi Kontinu 

2.13.1 Distribusi Erlang 

Definisi 2.24 (Thomopoulos, 2017) 

Sebuah peubah acak 𝑋 dikatakan berdistribusi Erlang (𝛼, 𝛽), jika fungsi kepadatan 

peluangnya berbentuk: 

 

𝑓(𝑥) =
1

𝛽𝛼(𝛼 − 1)!
𝑥𝛼−1 exp (−(

𝑥

𝛽
)) , 𝑥 ≥ 0 , 𝛽 > 0 , 𝛼 ∈ ℤ (2.1) 

 

dan fungsi distribusi kumulatif distribusi Erlang (𝛼, 𝛽) berbentuk : 

 

𝐹(𝑥) =
1

𝛽𝑚(m − 1)!
∫ 𝑡𝑚−1𝑒

−
𝑡
𝛽𝑑𝑡

𝑥

0
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dengan 

𝛼 = parameter bentuk 

𝛽 = parameter skala 

 

2.13.2 Distribusi Fatigue Life 

Definisi 2.25 

Sebuah peubah acak 𝑋  dikatakan berdistribusi Fatigue Life (𝛼, 𝛽) , jika fungsi 

kepadatan peluangnya berbentuk: 

 

𝑓(𝑥) =

√
𝑥
𝛽

+ √𝛽
𝑥

2𝛼𝑥
𝜙 (

1

𝛼
(√

𝑥

𝛽
− √

𝛽

𝑥
)) , 𝑥 > 0 , 𝛼 > 0 , 𝛽 > 0 (2.2) 

 

dan fungsi distribusi kumulatif distribusi Fatigue Life (𝛼, 𝛽) berbentuk : 

 

𝐹(𝑥) = 𝛷 (
1

𝛼
(√

𝑥

𝛽
− √

𝛽

𝑥
)) 

 

dengan 

𝛼 = parameter bentuk 

𝛽 = parameter skala 

𝜙 = fungsi kepadatan peluang distribusi Normal standard 

𝛷 = fungsi distribusi kumulatif distribusi Normal standard 

Distribusi normal standard adalah distribusi Normal dengan nilai parameter 

𝜇 = 0 dan parameter 𝜎 = 1. 

 

2.13.3  Distribusi Frechet 

Definisi 2.26 

Sebuah peubah acak 𝑋 dikatakan berdistribusi Frechet (𝛼, 𝛽), jika fungsi kepadatan 

peluangnya berbentuk: 

 



19 

 

𝑓(𝑥) =
𝛼

𝛽
(
𝛽

𝑥
)
𝛼+1

exp(−(
𝛽

𝑥
)
𝛼

) , 𝑥 > 0 , 𝛼 > 0 , 𝛽 > 0 (2.3) 

 

dan fungsi distribusi kumulatif distribusi Frechet (𝛼, 𝛽) berbentuk : 

 

𝐹(𝑥) = exp (−(
𝛽

𝑥
)
𝛼

) 

 

dengan 

𝛼 = parameter bentuk 

𝛽 = parameter skala 

 

2.13.4 Distribusi Gamma 

Definisi 2.27 (Walpole dan Myers, 1995) 

Sebuah peubah acak 𝑋  dikatakan berdistribusi Gamma (𝛼, 𝛽) , jika fungsi 

kepadatan peluangnya berbentuk: 

 

𝑓(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1 exp (−(

𝑥

𝛽
)) , 𝑥 > 0 , 𝛼 > 0 , 𝛽 > 0 (2.4) 

 

dan fungsi distribusi kumulatif distribusi Gamma (𝛼, 𝛽) berbentuk : 

 

𝐹(𝑥) =
1

𝛽𝛼Γ(𝛼)
∫ 𝑡𝛼−1𝑒

−
𝑡
𝛽𝑑𝑡

𝑥

0

 

dengan 

Γ(𝛼) = fungsi gamma 

𝛼 = parameter bentuk  

𝛽 = parameter skala  
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Definisi 2.28 (Walpole dan Myers, 1995) 

Fungsi gamma didefinisikan sebagai 

 

Γ(𝛼) = ∫ 𝑒−𝑥𝑥𝛼−1 𝑑𝑥

∞

0

 , 𝛼 > 0 

 

2.13.5  Distribusi Log-Logistik 

Definisi 2.29 

Sebuah peubah acak 𝑋  dikatakan berdistribusi Log-Logistik (𝛼, 𝛽) , jika fungsi 

kepadatan peluangnya berbentuk: 

 

𝑓(𝑥) = (
𝛼

𝛽
) (

𝑥

𝛽
)
𝛼−1

(1 + (
𝑥

𝛽
)
𝛼

)
−2

 , 𝑥 ≥ 0 , 𝛼 > 0 , 𝛽 > 0 (2.5) 

 

dan fungsi distribusi kumulatif distribusi Log-Logistik (𝛼, 𝛽) berbentuk : 

 

𝐹(𝑥) = (1 + (
𝛽

𝑥
)
𝛼

)

−1

 

 

dengan 

𝛼 = parameter bentuk  

𝛽 = parameter skala  

 

2.13.6 Distribusi Pareto 

Definisi 2.30 

Sebuah peubah acak 𝑋 dkatakan berdistribusi Pareto (𝛼, 𝛽), jika fungsi kepadatan 

peluangnya berbentuk: 

 

𝑓(𝑥) =
𝛼𝛽𝛼

𝑥𝛼+1
 , 𝛽 ≤ 𝑥 < +∞ (2.6) 
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dan fungsi distribusi kumulatif distribusi Pareto (𝛼, 𝛽) berbentuk : 

 

𝐹(𝑥) = 1 − (
𝛽

𝑥
)
𝛼

 

 

dengan 

𝛼 = parameter bentuk (𝛼 > 0) 

𝛽 = parameter skala (𝛽 > 0) 

 

2.13.7 Distribusi Pearson Tipe 5 

Definisi 2.31 

Sebuah peubah acak 𝑋 dikatakan berdistribusi Pearson Tipe V (𝛼, 𝛽), jika fungsi 

kepadatan peluangnya berbentuk: 

 

𝑓(𝑥) =
exp (−

𝛽
𝑥
)

𝛽Γ(𝛼) (
𝑥
𝛽
)
𝛼+1  , 𝑥 > 0 (2.7) 

 

dan fungsi distribusi kumulatif distribusi Pearson Tipe V (𝛼, 𝛽) berbentuk : 

 

𝐹(𝑥) =

Γβ
x

(𝛼)

Γ(𝛼)
 

dengan 

𝛼 = parameter bentuk (𝛼 > 0) 

𝛽 = parameter skala (𝛽 > 0) 

 

2.13.8 Distribusi Weibull 

Definisi 2.32 (Walpole dan Myers, 1995) 

Sebuah peubah acak 𝑋  dikatakan berdistribusi Weibull (𝛼, 𝛽) , jika fungsi 

kepadatan peluangnya berbentuk: 
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𝑓(𝑥) =
𝛼

𝛽
(
𝑥

𝛽
)
𝛼−1

exp (− (
𝑥

𝛽
)
𝛼

) , 𝑥 > 0 , 𝛼 > 0 , 𝛽 > 0 (2.8) 

 

dan fungsi distribusi kumulatif distribusi Weibull (𝛼, 𝛽) berbentuk : 

 

𝐹(𝑥) = 1 − exp (−(
𝑥

𝛽
)
𝛼

) 

 

dengan 

𝛼 = parameter bentuk  

𝛽 = parameter skala  

 

2.14 Parameter 

Definisi 2.33 (Walpole, 2005) 

Sebarang nilai yang menjelaskan ciri populasi disebut parameter. 

 

Secara umum parameter dilambangkan dengan huruf yunani dan merupakan 

suatu konstanta yang menjelaskan populasi. Terdapat beberapa jenis parameter 

yang biasa digunakan dalam ilmu peluang, seperti mean, standard deviasi, 

parameter skala, parameter bentuk, parameter lokasi, dan sebagainya.  

Parameter skala dan parameter bentuk adalah jenis khusus parameter numerik dari 

kelurga parametrik dimana parameter skala menunjukkan besarnya jangkauan data. 

Semakin besar nilai parameter skala maka distribusi data akan semakin menyebar 

begitu pun sebaliknya. Berbeda dengan parameter skala, parameter bentuk 

menunjukkan bentuk sebaran data. Semakin besar nilai parameter bentuk maka data 

akan cenderung menyebar pada suatu interval tertentu begitu pun sebaliknya.  

Misalkan sebuah peubah acak 𝑋 dikatakan berdistribusi Normal dengan parameter 

𝜇 dan 𝜎, maka fungsi kepadatan peluangnya berbentuk: 

 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒(

1
2
)(

𝑥−𝜇
𝜎

)
2

; −∞ < 𝑥 < ∞ 
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dengan parameter lokasi yaitu mean atau yang biasa ditulis dengan 𝜇 , dan 

paramerter skala yaitu standard deviasi atau yang biasa ditulis dengan 𝜎. Parameter 

𝜇 dari distribusi Normal menunjukkan letak puncak dari grafik fungsi kepadatan 

peluang. Sedangkan parameter 𝜎  dari distribusi Normal menunjukkan bentuk 

grafik fungsi kepadatan peluang. Semakin besar parameter 𝜎, maka grafik yang 

dihasilkan akan semakin pendek dan melebar, begitu pun sebaliknya. Seperti yang 

terlihat pada ambar 2.2. Ketika nilai parameter 𝜇 = 1, maka puncak grafik berada 

pada 𝑥 = 1. Sedangkan ketika nilai parameter 𝜇 = 2, maka puncak grafik berada 

pada 𝑥 = 2 . Kemudian berdasarkan gambar 2.2 terlihat bahwa ketika nilai 

parameter 𝜎, bergerak dari 1 ke 3, maka grafik yang dihasilkan semakin pendek dan 

melebar. 

 

 

Gambar 2.4 Grafik Fungsi Kepadatan Peluang Distribusi Normal 

 

2.15 Metode Newton-Raphson 

Metode newton-raphson adalah salah satu metode pendekatan dalam mencari 

akar-akar sebuah persamaan. Terdapat dua jenis pendekatan untuk menurunkan 

rumus newton-raphson, yaitu secara geometri dan dengan bantuan deret taylor. 

Penurunan rumus newton-raphson secara geometri sebagai berikut: 
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Gambar 2.5 Penurunan Newton-Raphson 
 

Dari gambar diatas gradien garis singgung di 𝑥𝑖 adalah 

 

𝑚 = 𝑓′(𝑥𝑖) =
∆𝑦

∆𝑥
=

𝑓(𝑥𝑖) − 0

𝑥𝑖 − 𝑥𝑖+1
 

 

atau 

 

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖)

𝑥𝑖 − 𝑥𝑖+1
 

 

Sehingga diperoleh rumus newton-raphson sebagai berikut: 

 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 (2.9) 

 

Misalkan 𝑥𝑖 adalah nilai hampiran terhadap nilai sejati 𝑥𝑖+1, maka selisih dari 

𝑥𝑖+1  dan 𝑥𝑖  disebut galat dan biasanya dinotasikan dengan 𝜀 . Jika tanda galat 

(positif atau negatif) tidak dipertimbangkan, maka disebut galat mutlak dan 

didefinisikan sebagai berikut : 

 

𝜀 = |𝑥𝑖+1 − 𝑥𝑖| 
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dan galat relatif didefinisikan sebagai berikut: 

 

𝜀 =
|𝑥𝑖+1 − 𝑥𝑖|

|𝑥𝑖+1|
 

 

Menurut Epperson (2013) 

Langkah-langkah mencari akar suatu fungsi dengan metode newton-raphson 

adalah: 

1. Menentukan nilai 𝑥0, 

2. Mentukan turunan pertama dari 𝑓(𝑥), 

3. Mentukan nilai 𝑥𝑖+1 dengan menggunakan rumus newton-raphson, 

4. Dilakukan iterasi sebanyak 𝑖 kali hingga nilai galat relatif hampiran kurang dari 

galat relatif yang sudah ditentukan, 

5. Maka pada iterasi ke-𝑖, diperoleh 𝑥𝑖+1 akar persamaan dari 𝑓(𝑥). 

 

Contoh 2.6 

Tentukan salah satu akar persamaan linier 𝑥5 + 2𝑥2 − 4 = 0  dengan metode 

newton-raphson dengan kesalahan relatif hampiran sebesar 0.001. 

 

 

Penyelesaian 

Diketahui 𝑓(𝑥) = 𝑥5 + 2𝑥2 − 4 dan 𝜀 = 0.001. 

Maka 𝑓′(𝑥) = 5𝑥4 + 4𝑥 

Pilih nilai awal 𝑥0 = 1, maka diperoleh 

 

𝑓(1) = 15 + 2(1)2 − 4 = 1 + 2 − 4 = −1 

 

Dan, 

 

𝑓′(1) = 5(1)4 + 4(1) = 5 + 4 = 9 
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Iterasi ke-1 

Hitung hampiran akar pertama. 

 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
= 1 −

𝑓(1)

𝑓′(1)
= 1 +

1

9
=

10

9
= 1.111 

 

Kemudian hitung kesalahan relatif 𝜀1 

 

𝜀1 = |
𝑥1 − 𝑥0

𝑥1
| = |

1.111 − 1

1.111
| = |

0.111

1.111
| = 0.1 

 

Karena kesalahan relatif 𝜀1 = 0.1 > 0.001 , maka perhitungan dilanjutkan ke 

Iterasi ke-2. 

 

Iterasi ke-2 

Hitung hampiran akar selanjutnya 𝑥2 

 

𝑓(𝑥1) = 𝑓(1.111) = (1.111)5 + 2(1.111)2 − 4 = 0.16265 

𝑓′(𝑥1) = 𝑓′(1.111) = 5(1.111)4 + 4(1.111) = 12.065 

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓′(𝑥1)
= 1.111 −

𝑓(1.111)

𝑓′(1.111)
= 1.111 −

0.16265

12.065
= 1.09763 

 

Kemudian hitung kesalahan relatif 𝜀2 

 

𝜀2 = |
𝑥2 − 𝑥1

𝑥2
| = |

1.09763 − 1.111

1.09763
| = 0.01228 

 

Karena kesalahan relatif 𝜀2 = 0.01228 > 0.001, maka perhitungan dilanjutkan ke 

Iterasi ke-3. 

 

Iterasi ke-3 

Hitung hampiran akar selanjutnya 𝑥3 
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𝑓(𝑥2) = 𝑓(1.09763) = (1.09763)5 + 2(1.09763)2 − 4 = 0.00283 

𝑓′(𝑥2) = 𝑓′(1.09763) = 5(1.09763)4 + 4(1.09763) = 11.6482 

𝑥3 = 𝑥2 −
𝑓(𝑥2)

𝑓′(𝑥2)
= 1.09763 −

𝑓(1.09763)

𝑓′(1.09763)
= 1.09763 −

0.00283

11.6482
 

𝑥3 = 1.09739 

 

Kemudian hitung kesalahan relatif 𝜀3 

 

𝜀3 = |
𝑥3 − 𝑥2

𝑥3
| = |

1.09739 − 1.09763

1.09739
| = 0.000221 

 

Karena kesalahan relatif 𝜀3 = 0.000221 < 0.001, maka perhitungan dihentikan 

pada Iterasi ke-3. Diperoleh salah satu akar dari persamaan 𝑥5 + 2𝑥2 − 4 = 0 

adalah 𝑥 = 1.09739. 

 

2.16 Metode Estimasi Kemungkinan Maksimum 

Metode Estimasi Kemungkinan Maksimum adalah teknik pendugaan 

parameter dengan memaksimumkan fungsi Likelihood-nya. Misalkan pada suatu 

kejadian di mana 𝑋  hanya dapat mengambil sebagian nilai terbilang 𝑥1, 𝑥2, … , 

dengan 𝑃𝜃(𝑥) = 𝑃𝜃{𝑋 = 𝑥}  , dan ingin menentukan nilai 𝜃  terbaik, di mana 

nantinya nilai 𝜃 akan digunakan untuk menghasilkan nilai 𝑥 yang diamati. Hal ini 

menyarankan untuk mempertimbangkan untuk setiap nilai 𝜃 yang memungkinkan, 

berapa besar kemungkinan terjadinya 𝑥  yang diamati, jika 𝜃  merupakan nilai 

sebenarnya. Semakin besar kemungkinannya, maka semakin banyak nilai 𝜃 yang 

terlibat ke dalam penjelasan yang menunjukkan bahwa 𝜃  yang dimaksud 

menghasilkan nilai 𝑥, dan semakin memungkinkan munculnya nilai 𝜃. Maka dari 

itu, 𝑃𝜃  yang digunakan untuk nilai 𝑋  yang tetap sebagai fungsi dari 𝜃  disebut 

sebagai kemungkinan dari 𝜃 yang kemudian dinotasikan sebagai 𝐿(𝜃) (Lehmann & 

Romano, 2005). Jika 𝑋1, 𝑋2, … , 𝑋𝑛 adalah sampel random dari 𝑓(𝑥; 𝜃) maka  

 

𝐿(𝜃) = ∏𝑓(𝑥𝑖|𝜃)

𝑛

𝑖=1

 (2.10) 
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Untuk mencari nilai MLE-nya, akan lebih mudah jika fungsi 𝐿(𝜃) 

diselesaikan dalam bentuk logaritma alami. Hal ini dimungkinkan karena fungsi 

logaritma alami naik monoton pada (0, ∞), yang berarti fungsi 𝐿(𝜃) dan fungsi 

logaritma alami mempunyai ekstrem yang sama. Maka didefinisikan fungsi log-

likelihood sebagai berikut: 

 

𝑙(𝜃) = ln(𝐿(𝜃)) (2.11) 

 

Langkah-langkah dalam melakukan estimasi parameter dengan Metode 

Estimasi Kemungkinan Maksimum sebagai berikut (Olofsson & Andersson, 2012): 

1. Tentukan fungsi likelihoodnya (𝐿(𝜃)) 

2. Bentuk 𝐿(𝜃) ke dalam bentuk log- likelihood (𝑙(𝜃)) 

3. Tentukan turunan dari 𝑙(𝜃) terhadap 𝜃, kemudian tetapkan 
𝜕𝑙(𝜃)

𝜕𝜃
= 0 

 

Contoh 2.7 

Misalkan 𝑋1, 𝑋2, … , 𝑋𝑛  adalah sampel random dari distribusi poisson dengan 

parameter 𝜆 . Tentukan nilai estimasi 𝜆  dengan metode estimasi kemungkinan 

maksimum. 

 

Penyelesaian 

Diketahui fungsi kepadatan peluang dari distribusi poisson sebagai berikut: 

 

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
 ;  𝑥 = 0,1,2, … ;  𝜆 > 0 

 

Kemudian berdasarkan Persamaan (2.10) diperoleh fungsi likelihoodnya sebagai 

berikut: 

 

𝐿(𝜆) = ∏
𝑒−𝜆𝜆𝑥𝑖

𝑥𝑖!

𝑛

𝑖=1

 



29 

 

𝐿(𝜆) =
𝑒−𝑛𝜆𝜆∑ 𝑥𝑖

𝑛
𝑖=1

∏ 𝑥𝑖! 
𝑛
𝑖=1

 

 

Kemudian berdasarkan Persamaan (2.11) diperoleh bentuk fungsi log-

likelihoodnya sebagai berikut: 

 

𝑙(𝜆) = ln [
𝑒−𝑛𝜆𝜆∑ 𝑥𝑖

𝑛
𝑖=1

∏ 𝑥𝑖! 
𝑛
𝑖=1

] 

= ln 𝑒−𝑛𝜆 + ln 𝜆∑ 𝑥𝑖
𝑛
𝑖=1 − ln∏𝑥𝑖! 

𝑛

𝑖=1

 

𝑙(𝜆) = −𝑛𝜆 + ∑𝑥𝑖

𝑛

𝑖=1

ln 𝜆 − ∑ln 𝑥𝑖! 

𝑛

𝑖=1

 

 

Kemudian 𝑙(𝜆)  akan diturunkan secara parsial terhadap 𝜆  dan dijadikan sama 

dengan nol. 

 

𝜕𝑙(𝜆)

𝜕𝜆
= −𝑛 +

∑ 𝑥𝑖
𝑛
𝑖=1

𝜆
= 0 

𝑛 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝜆
 

𝜆̂ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
= 𝑋̅𝑛 (2.12) 

 

Jadi diperoleh nilai estimasi 𝜆̂ = 𝑋̅𝑛. 

Misalkan terdapat data acak sebagai berikut: 

 

Tabel 2.1 Data Acak 

Data 

9 

1 

10 

6 

1 
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Kemudian akan dicari nilai 𝜆. Berdasarkan Persamaan (2.12), maka diperoleh nilai 

𝜆 sebesar 5.4. 

 

𝜆̂ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
= 𝑋̅𝑛 

𝜆̂ =
9 + 1 + 10 + 6 + 1

5
=

27

5
= 5.4 

 

Validasi dengan Matlab 

 

 

 

Gambar 2.6 Estimasi Parameter dengan Matlab 

Dengan menggunakan Matlab, diperoleh nilai 𝜆̂ sebesar 5.4, sama dengan 

perhitungan manual. 

 

2.17 Supremum dan Infimum 

Definisi 2.34 (Bartle, 2011) 

Misalkan 𝑆  merupakan suatu himpunan tak kosong dan merupakan himpunan 

bagian dari ℝ. 

1. Hipunan 𝑆 dikatakan terbatas keatas jika terdapat suatu nilai 𝑢 ∈ ℝ, sedemikian 

sehingga 𝑠 ≤ 𝑢 untuk semua 𝑠 ∈ 𝑆. Setiap nilai 𝑢 yang memungkinkan disebut 

sebagai batas atas himpunan 𝑆. 

2. Hipunan 𝑆  dikatakan terbatas kebawah jika terdapat suatu nilai 𝑤 ∈ ℝ , 

sedemikian sehingga 𝑤 ≤ 𝑠  untuk semua 𝑠 ∈ 𝑆 . Setiap nilai 𝑤  yang 

memungkinkan disebut sebagai batas bawah himpunan 𝑆. 

parameter = fitdist(data,'poisson') 
[h,p,kstat,cv]=kstest(data,'CDF',parameter) 
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3. Sebuah himpunan dikatakan terbatas jika himpunan tersebut terbatas keatas dan 

kebawah. Sebuah himpunan dikatakan tidak terbatas jika himpunan tersebut 

tidak terbatas keatas dan kebawah. 

 

Definisi 2.35 (Bartle, 2011) 

Misalkan 𝑆 merupakan suatu himpunan bagian dari ℝ. 

a) Jika 𝑆 terbatas keatas, maka terdapat sebuah nilai 𝑢 yang merupakan supremum 

(batas atas terkecil) dari 𝑆 jika memenuhi : 

1. 𝑢 adalah batas atas dari S, dan 

2. Jika 𝑣 merupakan batas atas sebarang dari 𝑆, maka 𝑢 ≤ 𝑣. 

b) Jika 𝑆  terbatas kebawah, maka terdapat sebuah nilai 𝑤  yang merupakan 

infimum (batas bawah terbesar) dari 𝑆 jika memenuhi : 

1. 𝑤 adalah batas bawah dari 𝑆, dan 

2. Jika 𝑡 merupakan batas bawah sebarang dari 𝑆, maka 𝑤 ≥ 𝑡. 

 

2.18 Uji Kolmogorov-Smirnov 

Uji Kolmogorov-Smirnov atau yang biasa dikenal dengan uji KS adalah salah 

satu teknik uji hipotesis statistik terkenal, yang memeriksa apakah suatu sampel 

mengikuti sebaran dari distribusi probabilitas tertentu dengan membandingkan 

fungsi empiris dan fungsi distribusi kumulatif yang diasumsikan. Hipotesis yang 

akan diuji dalam penelitian ini adalah : 

𝐻0 : Data mengikuti model sebaran distribusi tersebut. 

𝐻1 : Data tidak mengikuti model sebaran distribusi tersebut. 

dengan statistik uji yang digunakan adalah : 

 

𝐷ℎ𝑖𝑡𝑢𝑛𝑔 = 𝑠𝑢𝑝𝑥|𝐹(𝑥) − 𝐻(𝑥)| (2.13) 

 

Di  mana 

𝐷ℎ𝑖𝑡𝑢𝑛𝑔 : Jarak vertikal terjauh antara 𝐹(𝑥) − 𝐻(𝑥). 

𝐹(𝑥) : Fungsi distribusi kumulatif distribusi yang dihipotesiskan. 

𝐻(𝑥)  : Fungsi Empiris. 
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dengan  

 

𝐻(𝑥) =
𝑓𝑟𝑒𝑘𝑢𝑒𝑛𝑠𝑖 𝑘𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑓 𝑋 ≤ 𝑥

𝑛
 (2.14) 

 

di mana 𝑛 adalah jumlah data. 

Dengan kriteria uji, jika nilai 𝐷ℎ𝑖𝑡𝑢𝑛𝑔 > 𝐷𝑡𝑎𝑏𝑒𝑙 dengan tingkat error sebesar 

𝛼 , maka 𝐻0  ditolak. Jika nilai 𝐷ℎ𝑖𝑡𝑢𝑛𝑔 < 𝐷𝑡𝑎𝑏𝑒𝑙  dengan tingkat error sebesar 𝛼 , 

maka 𝐻0 diterima atau dengan kata lain data mengikuti model sebaran distribusi 

tersebut. 

 

Contoh 2.8 

Pada Contoh 2.7 telah dilakukan estimasi parameter terhadap data acak pada Tabel 

2.1. Diperoleh nilai 𝜆 sebesar 5.4. Kemudian pada Contoh 2.8 ini akan dilakukan 

uji hipotesis data diatas yang diasumsikan berdistribusi poisson dengan uji 

kolmogorv-smirnov dengan hipotesis yang digunakan sebagai berikut : 

𝐻0 : Data mengikuti model sebaran distribusi Poisson. 

𝐻1 : Data tidak mengikuti model sebaran distribusi Poisson. 

dan dengan taraf signifikan sebesar 0.05. 

 

Penyelesaian 

 

Tabel 2.2 Uji Kolmogorov-Smirnov Distribusi Poisson 

Data Frekuensi 
Frekuensi 

Kumulatif 
𝐹(𝑥) 𝐻(𝑥) |𝐹(𝑥) − 𝐻(𝑥)| 

1 2 2 0.0289 0.4 0.371094 

6 1 3 0.701671 0.6 0.101671 

9 1 4 0.95125 0.8 0.151245 

10 1 5 0.977486 1 0.022514 

 

Penjelasan Tabel 2.2 

Susun data dari terkecil ke terbesar, kemudian hitung frekuensi dan frekuensi 

kumulatif data. Lalu hitung nilai 𝐹(𝑥)  dengan menggunakan fungsi distribusi 

kumulatif distribusi poisson. 
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Diketahui fungsi kepadatan peluang dari distribusi poisson sebagai berikut: 

 

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
 ;  𝑥 = (0,1,2, … ) ;  𝜆 > 0 

 

dan fungsi distribusi kumulatif distribusi poisson sebagai berikut: 

 

𝐹(𝑥) = ∑ 𝑒−𝜆
𝜆𝑥

𝑥!

𝑛

𝑥=0

= 𝑒−𝜆 ∑
𝜆𝑖

𝑖!

𝑥

𝑖=0

 

 

Untuk 𝜆 = 5.4 diperoleh 

 

𝐹(𝑥) = 𝑒−5.4 ∑
(5.4)𝑖

𝑖!

𝑥

𝑖=0

 

 

Kemudian akan dihitung nilai 𝐹(𝑥) untuk semua data. 

Untuk 𝑥 = 1 

 

𝐹(1) = 𝑒−5.4 ∑
(5.4)𝑖

𝑖!

1

𝑖=0

 

𝐹(1) = 𝑒−5.4 [
(5.4)0

0!
+

(5.4)1

1!
] 

𝐹(1) = 0.0045[1 + 5.4] = 0.0045[6.4] = 0.0289 

 

Untuk 𝑥 = 6 

 

𝐹(6) = 𝑒−5.4 ∑
(5.4)𝑖

𝑖!

6

𝑖=0

 

𝐹(6) = 𝑒−5.4 [
(5.4)0

0!
+

(5.4)1

1!
+

(5.4)2

2!
+

(5.4)3

3!
+

(5.4)4

4!
+

(5.4)5

5!
+

(5.4)6

6!
] 

𝐹(6) = 0.0045[1 + 5.4 + 14.58 + 26.244 + 35.4294 + 38.2638 + 34.4374] 

𝐹(6) = 0.0045[155.3545] = 0.70167 
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Untuk 𝑥 = 9 

 

𝐹(9) = 𝑒−5.4 ∑
(5.4)𝑖

𝑖!

9

𝑖=0

 

𝐹(9) = 𝑒−5.4 [
(5.4)0

0!
+

(5.4)1

1!
+

(5.4)2

2!
+

(5.4)3

3!
+

(5.4)4

4!
+

(5.4)5

5!
+

(5.4)6

6!

+
(5.4)7

7!
+

(5.4)8

8!
+

(5.4)9

9!
] 

𝐹(9) = 0.0045[1 + 5.4 + 14.58 + 26.244 + 35.4294 + 38.2638 + 34.4374

+ 26.56598 + 17.932 + 10.759] 

𝐹(9) = 0.0045[210.6118] = 0.95123 

 

Untuk 𝑥 = 10 

 

𝐹(10) = 𝑒−5.4 ∑
(5.4)𝑖

𝑖!

10

𝑖=0

 

𝐹(10) = 𝑒−5.4 [
(5.4)0

0!
+

(5.4)1

1!
+

(5.4)2

2!
+

(5.4)3

3!
+

(5.4)4

4!
+

(5.4)5

5!
+

(5.4)6

6!

+
(5.4)7

7!
+

(5.4)8

8!
+

(5.4)9

9!
+

(5.4)10

10!
] 

𝐹(10) = 0.0045[1 + 5.4 + 14.58 + 26.244 + 35.4294 + 38.2638 + 34.4374

+ 26.56598 + 17.932 + 10.759 + 5.80998] 

𝐹(10) = 0.0045[216.4217] = 0.977486  

 

Kemudian akan dicari nilai 𝐻(𝑥) dengan menggunakan Persamaan (2.14). 

 

𝐻(1) =
2

5
= 0.4 

𝐻(6) =
3

5
= 0.6 

𝐻(9) =
4

5
= 0.8 
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𝐻(10) =
5

5
= 1 

 

Kemudian dicari nilai |𝐹(𝑥) − 𝐻(𝑥)|. 

 

|𝐹(1) − 𝐻(1)| = |0.0289 − 0.4| = |−0.37109| = 0.37109 

|𝐹(6) − 𝐻(6)| = |0.701671 − 0.6| = |0.10167| = 0.10167 

|𝐹(9) − 𝐻(9)| = |0.95125 − 0.8| = |0.151245| = 0.151245 

|𝐹(10) − 𝐻(10)| = |0.977486 − 1| = |−0.022514| = 0.022514 

 

Berdasarkan Persamaan (2.13) diperoleh nilai 𝐷ℎ𝑖𝑡𝑢𝑛𝑔  sebesar 0.371094 . 

Sedangkan 𝐷𝑡𝑎𝑏𝑒𝑙  sebesar 0.56327  yang diperoleh melalui tabel Kolmogorov-

Smirnov pada Lampiran 3. Karena 𝐷ℎ𝑖𝑡𝑢𝑛𝑔 < 𝐷𝑡𝑎𝑏𝑒𝑙, maka berdasarkan kriteria uji 

dapat disimpulkan bahwa 𝐻0  diterima atau dengan kata lain, data mengikuti 

sebaran distribusi Poisson.  

 

Validasi dengan menggunakan Matlab. 

 

 

 

 

Gambar 2.7 Uji Kolmogorov-Smirnov dengan Matlab 

parameter = fitdist(data,'poisson') 
[h,p,kstat,cv]=kstest(data,'CDF',parameter) 
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Dengan menggunakan Matlab, diperoleh nilai statistik uji sebesar 0.3711 

dengan 𝐷𝑡𝑎𝑏𝑒𝑙 sebesar 0.56327. 

 

2.19 Uji Anderson-Darling 

Uji Anderson-Darling adalah memeriksa apakah suatu sampel mengikuti 

sebaran dari distribusi probabilitas tertentu dengan berdasarkan pada nilai statistik 

uji Anderson-Darling. Statistik uji Anderson-Darling dikenal sebagai statistik yang 

kuat dengan menekankan perbedaan pada ujung kurva antara fungsi empiris dan 

fungsi distribusi kumulatif dari distribusi yang diasumsikan (Ang & Tang, 2007). 

Statistik uji Anderson-Darling dapat didefinisikan sebagai 

 

𝐴𝑛
2 = −𝑛 −

1

𝑛
 ∑(2𝑖 − 1)[log 𝐹(𝑥𝑖) + log(1 − 𝐹(𝑥𝑛+1−𝑖)]

𝑛

𝑖=1

 (2.15) 

 

Di mana 

𝐴𝑛
2  : Statistik uji Anderson-Darling. 

𝐹(𝑥) : Fungsi distribusi kumulatif distribusi yang dihipotesiskan. 

𝑛 : Jumlah data. 

𝑖 : Frekuensi kumulatif. 

Dengan kriteria uji, jika nilai 𝐷ℎ𝑖𝑡𝑢𝑛𝑔 > 𝐷𝑡𝑎𝑏𝑒𝑙 dengan tingkat error sebesar 

𝛼 , maka 𝐻0  ditolak. Jika nilai 𝐷ℎ𝑖𝑡𝑢𝑛𝑔 < 𝐷𝑡𝑎𝑏𝑒𝑙  dengan tingkat error sebesar 𝛼 , 

maka 𝐻0 diterima atau dengan kata lain data mengikuti model sebaran distribusi 

tersebut. 

 

Contoh 2.9 

Akan dilakukan uji hipotesis data acak pada Tabel 2.1 yang diasumsikan 

berdistribusi normal dengan uji Anderson-Darling dengan hipotesis yang 

digunakan sebagai berikut : 

𝐻0 : Data mengikuti model sebaran distribusi Normal. 

𝐻1 : Data tidak mengikuti model sebaran distribusi Normal. 

dan dengan taraf signifikan sebesar 0.05. 
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Penyelesaian 

 

Tabel 2.3 Uji Anderson Darling 

Data (𝑥𝑖 − 𝜇) (𝑥𝑖 − 𝜇)2 
Frekuensi 

Kumulatif (𝑖) 
𝐹(𝑥𝑖) 𝐹(𝑥𝑛+1−𝑖) 𝐴𝐷(𝑆)𝑖 

1 −4.4 19.36 1 0.151844633 0.858881245 -0.768610189 

1 −4.4 19.36 2 0.151844633 0.799978446 -2.096536551 

6 0.6 0.36 3 0.555771679 0.555771679 -1.398814331 

9 3.6 12.96 4 0.799978446 0.151844633 -0.543006713 

10 4.6 21.16 5 0.858881245 0.151844633 -0.570268904 

 

Penjelasan Tabel 2.3 

Susun data dari terkecil ke terbesar, kemudian hitung frekuensi kumulatif data. 

Diketahui fungsi kepadatan peluang dari distribusi normal sebagai berikut: 

 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒(

1
2
)(

𝑥−𝜇
𝜎

)
2

; −∞ < 𝑥 < ∞ 

 

dan fungsi distribusi kumulatif distribusi normal sebagai berikut: 

 

𝐹(𝑥) = ∫
1

√2𝜋𝜎
𝑒(

1
2
)(

𝑡−𝜇
𝜎

)
2

 𝑑𝑡
𝑥

−∞

 

 

Hitung mean dan standard deviasi 

 

𝜇 =
1 + 1 + 6 + 9 + 10

5
= 5.4 

𝑆𝐷 = [
∑(𝑥𝑖 − 𝜇)2

𝑛 − 1
]

1
2

= [
73.2

4
]

1
2

= 4.27785 

 

Hitung nilai 𝐹(𝑥𝑖)  dengan menggunakan fungsi distribusi kumulatif distribusi 

normal. 

 

𝐹(1) = ∫
1

√2𝜋𝜎
𝑒(

1
2
)(

𝑡−𝜇
𝜎

)
2

 𝑑𝑡
1

−∞

= 0.151844633 
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𝐹(6) = ∫
1

√2𝜋𝜎
𝑒(

1
2
)(

𝑡−𝜇
𝜎

)
2

 𝑑𝑡
6

−∞

= 0.555771679 

𝐹(9) = ∫
1

√2𝜋𝜎
𝑒(

1
2
)(

𝑡−𝜇
𝜎

)
2

 𝑑𝑡
9

−∞

= 0.799978446 

𝐹(10) = ∫
1

√2𝜋𝜎
𝑒(

1
2
)(

𝑡−𝜇
𝜎

)
2

 𝑑𝑡
10

−∞

= 0.858881245 

 

Kemudian nilai 𝐹(𝑥𝑖)  yang sudah diperoleh, disusun secara terurut dari yang 

terbesar ke yang terkecil untuk memperoleh nilai 𝐹(𝑥𝑛+1−𝑖). Lalu hitung nilai 𝑆 

dengan rumus sebagai berikut : 

 

𝑆 = ∑ 𝐴𝐷(𝑆)𝑖 = ∑
2𝑖 − 1

𝑛
(ln(𝐹(𝑥𝑖) + ln(1 − 𝐹(𝑥𝑛+1−𝑖)) 

 

Dimana 𝑛 adalah banyaknya data. Sehingga diperoleh nilai 𝑆 = −5.37724. 

Hitung nilai statistik uji dengan rumus sebagai berikut : 

 

𝐴2 = −𝑛 − 𝑠 = −5 − (−5.37724) 

𝐴2 = 0.377237 

Berdasarkan Persamaan (2.15) diperoleh nilai 𝐷ℎ𝑖𝑡𝑢𝑛𝑔  sebesar 0.377237 . 

Sedangkan 𝐷𝑡𝑎𝑏𝑒𝑙 sebesar 2.5 yang diperoleh melalui tabel Anderson-Darling pada 

Lampiran 4. Karena 𝐷ℎ𝑖𝑡𝑢𝑛𝑔 < 𝐷𝑡𝑎𝑏𝑒𝑙 , maka berdasarkan kriteria uji dapat 

disimpulkan bahwa 𝐻0  diterima atau dengan kata lain, data mengikuti sebaran 

distribusi Normal.  

 

Validasi dengan Matlab 

 

 

 

parameter = fitdist(data,'poisson') 
[h,p,kstat,cv]=adtest(data,'Distribution',parameter) 
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Gambar 2.8 Uji Anderson-Darling dengan Matlab 

 

Dengan menggunakan Matlab, diperoleh nilai 𝐷ℎ𝑖𝑡𝑢𝑛𝑔 sebesar 0.3772 dengan 

𝐷𝑡𝑎𝑏𝑒𝑙 sebesar 2.5314. 

 

2.20 Normalisasi Z-Score 

Normalisasi Z-Score adalah salah satu teknik transformasi data yang 

berdasarkan pada nilai rata-rata data dan nilai standar deviasi data (Henderi, 2021). 

 

𝑍 =
𝑥 − 𝜇

𝜎
 (2.16) 

 

Di mana 

Z : data yang sudah dinormalisasi 

𝑥 : data yang akan dinormalisasi 

𝜇 : rata-rata data 

𝜎 : standard deviasi data 
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2.21 Analisis Klaster 

Pengelompokan data atau Clustering adalah proses membagi sekelompok 

objek ke dalam beberapa kelompok/klaster berdasarkan kesamaan dan 

ketaksamaannya. Dalam mengelompokkan data, terdapat beberapa metode yang 

dapat digunakan. Namun, secara umum metode pengelompokkan data terbagi 

menjadi dua jenis, hirarki clustering dan non-hirarki clustering. Hirarki clustering 

sendiri terbagi menjadi dua jenis yaitu Agglomerative Hierarchical Clustering dan 

Divisive Hierarchical Clustering. Agglomerative Hierarchical Clustering akan 

menganggap setiap objek sebagai sebuah klaster, kemudian beberapa klaster 

digabungkan menjadi sebuah klaster baru sampai diperoleh klaster yang diinginkan. 

Sedangkan Divisive Hierarchical Clustering akan menganggap semua objek 

tergabung dalam sebuah klaster, kemudian dipisahkan menjadi beberapa klaster 

sampai diperoleh klaster yang diinginkan. Adapun contoh dari hirarki Clustering 

seperti Single Linkage Clustering, Complete Linkage Clustering, Average Linkage 

Clustering, dan Metode Ward. 

 

2.22  Single Linkage Clustering 

Single Linkage Clustering merupakan salah satu jenis dari Agglomerative 

Hierarchical Clustering. Pada metode Single Linkage, setiap objek akan 

ditempatkan ke dalam sebuah klaster terpisah. Kemudian, klaster-klaster yang 

memiliki jarak antar klaster terdekat akan dikelompokkan menjadi sebuah klaster 

baru pada setiap iterasi hingga kondisi terminasi tertentu terpenuhi. Jarak antar 

klaster dapat dihitung dengan menggunakan Euclidean Distance, dengan rumus 

sebagai berikut: 

 

𝑑(𝑢,𝑣) = [∑(𝑥𝑘 − 𝑦𝑘)
2

𝑛

𝑘=1

]

1
2

 (2.17) 

 

Di mana  

𝑑(𝑢,𝑣) : jarak antar klaster 𝑢 dan klaster 𝑣 

𝑥𝑘 : data pada klaster 𝑢 

𝑦𝑘 : data pada klaster 𝑣 
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Misalkan terdapat tiga buah data yaitu 𝑈, 𝑉, dan 𝑊 dengan 𝑈 dan 𝑉 berada 

dalam satu klaster (𝑈𝑉). Maka jarak antar data baru antara klaster (𝑈𝑉) ke 𝑊 

dapat dihitung dengan cara mencari nilai terkecil antara jarak 𝑈 ke 𝑊 dan jarak 𝑉 

ke 𝑊. 

 

𝑑((𝑈,𝑉)𝑊) = min{𝑑(𝑈,𝑊), 𝑑(𝑉,𝑊)} (2.18) 

 

Di mana  

𝑑(𝑈,𝑉)𝑊 : jarak antar klaster (𝑈, 𝑉) dan klaster 𝑊 

𝑑𝑈𝑊 : jarak antar klaster 𝑈 dan klaster 𝑊 

𝑑𝑉𝑊 : jarak antar klaster 𝑉 dan klaster 𝑊 

Langkah-langkah dalam melakukan klasterisasi dengan metode Single 

Linkage Clustering sebagai berikut: 

1. Dimulai dengan mencari jarak antar data dengan menggunakan Persamaan 

(2.16). 

2. Pada iterasi pertama, tentukan pasangan data yang memiliki jarak antar data 

terkecil. 

3. Pasangan data yang memiliki jarak antar data terkecil akan digabungkan menjadi 

suatu klaster baru. 

4. Ulangi langkah 2 dan langkah 3 sampai klaster yang diinginkan terbentuk. 

 

Contoh 2.10 

Diberikan data sebagai berikut. Bagaimana cara mengklasterisasi data dibawah 

dengan menggunakan metode Single Linkage Clustering? 

 

Tabel 2.4 Data 

Data X Y 

 𝑈1 0.40 0.53 

𝑈2 0.22 0.38 

𝑈3 0.35 0.32 

𝑈4 0.26 0.19 

𝑈5 0.08 0.41 

𝑈6 0.45 0.30 
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Penyelesaian 

Cari jarak antar data terlebih dahulu dengan menggunakan Persamaan (2.17). 

Jarak 𝑈1 ke 𝑈2 

 

𝑑(𝑈1,𝑈2) = [(0.40 − 0.22)2 + (0.53 − 0.38)2]
1
2 

𝑑(𝑈1,𝑈2) = [(0.18)2 + (0.15)2]
1
2 

𝑑(𝑈1,𝑈2) = [0.0324 + 0.0225]
1
2 = [0.0549]

1
2 

𝑑(𝑈1,𝑈2) = 0.2343 ≈ 0.23 

 

Jarak 𝑈1 ke 𝑈3 

 

𝑑(𝑈1,𝑈3) = [(0.40 − 0.35)2 + (0.53 − 0.32)2]
1
2 

𝑑(𝑈1,𝑈3) = [(0.05)2 + (0.21)2]
1
2 

𝑑(𝑈1,𝑈3) = [0.0025 + 0.0441]
1
2 = [0.0466]

1
2 

𝑑(𝑈1,𝑈3) = 0.2158 ≈ 0.22 

 

Jarak 𝑈1 ke 𝑈4 

 

𝑑(𝑈1,𝑈4) = [(0.40 − 0.26)2 + (0.53 − 0.19)2]
1
2 

𝑑(𝑈1,𝑈4) = [(0.14)2 + (0.34)2]
1
2 

𝑑(𝑈1,𝑈4) = [0.0196 + 0.1156]
1
2 = [0.1352]

1
2 

𝑑(𝑈1,𝑈4) = 0.3676 ≈ 0.37 

 

Jarak 𝑈1 ke 𝑈5 

 

𝑑(𝑈1,𝑈5) = [(0.40 − 0.08)2 + (0.53 − 0.41)2]
1
2 

𝑑(𝑈1,𝑈5) = [(0.32)2 + (0.12)2]
1
2 
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𝑑(𝑈1,𝑈5) = [0.1024 + 0.0144]
1
2 = [0.1168]

1
2 

𝑑(𝑈1,𝑈5) = 0.3417 ≈ 0.34 

 

Jarak 𝑈1 ke 𝑈6 

 

𝑑(𝑈1,𝑈6) = [(0.40 − 0.45)2 + (0.53 − 0.30)2]
1
2 

𝑑(𝑈1,𝑈6) = [(−0.05)2 + (0.23)2]
1
2 

𝑑(𝑈1,𝑈6) = [0.0025 + 0.0529]
1
2 = [0.0554]

1
2 

𝑑(𝑈1,𝑈6) = 0.2353 ≈ 0.24 

 

Proses ini dilakukan terus hingga diperoleh semua jarak antar klaster. Jarak antar 

klaster yang sudah diperoleh, kemudian dibentuk ke dalam bentuk tabel untuk 

mempermudah perhitungan. Sehingga diperoleh tabel jarak antar klaster sebagai 

berikut : 

 

Tabel 2.5 Jarak Antar Klaster 

 𝑈1 𝑈2 𝑈3 𝑈4 𝑈5 𝑈6 

𝑈1 0      

𝑈2 0.23 0     

𝑈3 0.22 0.14 0    

𝑈4 0.37 0.19 0.16 0   

𝑈5 0.34 0.14 0.28 0.28 0  

𝑈6 0.24 0.24 0.10 0.22 0.39 0 

 

Iterasi 1 

Kemudian berdasarkan Tabel 2.5, cari jarak antar klaster terdekat yaitu 

𝑑(𝑈3,𝑈6) = 0.10  sehingga 𝑈3  dan 𝑈6  akan membentuk sebuah klaster baru. 

Kemudian akan dicari jarak antar klaster yang baru dengan menggunakan 

Persamaan (2.18). 

 

𝑑((𝑈3,𝑈6),𝑈1) = min{𝑑(𝑈3,𝑈1), 𝑑(𝑈6,𝑈1)} = min{0.22 , 0.24} = 0.22 
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𝑑((𝑈3,𝑈6),𝑈2) = min{𝑑(𝑈3,𝑈2), 𝑑(𝑈6,𝑈2)} = min{0.14 , 0.24} = 0.14 

𝑑((𝑈3,𝑈6),𝑈4) = min{𝑑(𝑈3,𝑈4), 𝑑(𝑈6,𝑈4)} = min{0.16 , 0.22} = 0.16 

𝑑((𝑈3,𝑈6),𝑈5) = min{𝑑(𝑈3,𝑈5), 𝑑(𝑈6,𝑈5)} = min{0.28 , 0.39} = 0.28 

 

Diperoleh tabel jarak antar klaster yang baru sebagai berikut : 

 

Tabel 2.6 Jarak Antar Klaster pada Iterasi Ke-1 

 𝑈1 𝑈2 𝑈3, 𝑈6 𝑈4 𝑈5 

𝑈1 0     

𝑈2 0.23 0    

𝑈3, 𝑈6 0.22 0.14 0   

𝑈4 0.37 0.19 0.16 0  

𝑈5 0.34 0.14 0.28 0.28 0 

 

Jika jumlah klaster yang ingin dibentuk sebanyak 5 klaster, maka perhitungan 

dapat dihentikan pada Iterasi 1 dengan klaster yang terbentuk berdasarkan Tabel 

2.8 yaitu klaster 𝑈1, klaster 𝑈2, klaster (𝑈3, 𝑈6), klaster 𝑈4, dan klaster 𝑈5. Jika 

tidak, maka perhitungan akan dilanjutkan ke Iterasi 2. 

 

Iterasi 2 

Pada Tabel 2.6, cari jarak antar klaster terdekat yaitu 𝑑(𝑈5,𝑈2) = 0.14  dan 

𝑑((𝑈3,𝑈6),𝑈2) = 0.14 . Namun klaster baru yang akan terbentuk hanya klaster 

(𝑈2, 𝑈5). Hal ini dikarenakan 𝑑(𝑈5,𝑈2)  merupakan jarak antar klaster 𝑈5  dan 𝑈2 , 

dimana masing-masing klaster beranggotakan satu anggota. Sedangkan  

𝑑((𝑈3,𝑈6),𝑈2)  merupakan jarak antar klaster (𝑈3, 𝑈6)  dan 𝑈2 , dimana klaster 

(𝑈3, 𝑈6) beranggotakan dua anggota. Kemudian akan dicari jarak antar klaster yang 

baru dengan menggunakan Persamaan (2.18). 

 

𝑑((𝑈2,𝑈5),𝑈1) = min{𝑑(𝑈2,𝑈1), 𝑑(𝑈5,𝑈1)} = min{0.23 , 0.34} = 0.23 

𝑑((𝑈2,𝑈5),(𝑈3,𝑈6)) = min {𝑑(𝑈2,(𝑈3,𝑈6)), 𝑑(𝑈5,(𝑈3,𝑈6))} = min{0.14 , 0.28} = 0.14 

𝑑((𝑈2,𝑈5),𝑈4) = min{𝑑(𝑈2,𝑈4), 𝑑(𝑈5,𝑈4)} = min{0.19 , 0.28} = 0.19 
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Diperoleh tabel jarak antar klaster yang baru sebagai berikut : 

 

Tabel 2.7 Jarak Antar Klaster pada Iterasi Ke-2 

 𝑈1 𝑈2, 𝑈5 𝑈3, 𝑈6 𝑈4 

𝑈1 0    

𝑈2, 𝑈5 0.23 0   

𝑈3, 𝑈6 0.22 0.14 0  

𝑈4 0.37 0.19 0.16 0 

 

Jika jumlah klaster yang ingin dibentuk sebanyak 4 klaster, maka perhitungan 

dapat dihentikan pada Iterasi 2 dengan klaster yang terbentuk berdasarkan Tabel 

2.9 yaitu klaster 𝑈1, klaster (𝑈2, 𝑈5), klaster (𝑈3, 𝑈6), dan klaster 𝑈4. Jika tidak, 

maka perhitungan akan dilanjutkan ke Iterasi 3. 

 

Iterasi 3 

Pada Tabel 2.7, cari jarak antar klaster terdekat yaitu 𝑑((𝑈3,𝑈6),(𝑈2,𝑈5)) = 0.14 

sehingga (𝑈3, 𝑈6) dan (𝑈2, 𝑈5) akan membentuk sebuah klaster baru. Kemudian 

akan dicari jarak antar klaster yang baru dengan menggunakan Persamaan (2.18). 

 

𝑑((𝑈3,𝑈6,𝑈2,𝑈5),𝑈1) = min {𝑑((𝑈3,𝑈6),𝑈1), 𝑑((𝑈2,𝑈5),𝑈1)} = min{0.22 , 0.23 , } = 0.22 

𝑑((𝑈3,𝑈6,𝑈2,𝑈5),𝑈4) = min {𝑑((𝑈3,𝑈6),𝑈4), 𝑑((𝑈2,𝑈5),𝑈4)} = min{0.16 , 0.19 , } = 0.16 

 

Diperoleh tabel jarak antar klaster yang baru sebagai berikut : 

 

Tabel 2.8 Jarak Antar Klaster pada Iterasi Ke-3 

 𝑈1 𝑈3, 𝑈6, 𝑈2, 𝑈5 𝑈4 

𝑈1 0   

𝑈3, 𝑈6, 𝑈2, 𝑈5 0.22 0  

𝑈4 0.37 0.16 0 

 

Jika jumlah klaster yang ingin dibentuk sebanyak 3 klaster, maka perhitungan 

dapat dihentikan pada Iterasi 3 dengan klaster yang terbentuk berdasarkan Tabel 
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2.10 yaitu klaster 𝑈1 , klaster (𝑈3, 𝑈6, 𝑈2, 𝑈5) , dan klaster 𝑈4 . Jika tidak, maka 

perhitungan akan dilanjutkan ke Iterasi 4. 

 

Iterasi 4 

Pada Tabel 2.8, cari jarak antar klaster terdekat yaitu 𝑑((𝑈3𝑈6𝑈2𝑈5),𝑈4) = 0.16 

sehingga (𝑈3, 𝑈6, 𝑈2, 𝑈5) dan 𝑈4 akan membentuk sebuah klaster. Kemudian akan 

dicari jarak antar klaster yang baru dengan menggunakan Persamaan (2.18). 

 

𝑑((𝑈3,𝑈6,𝑈2,𝑈5,𝑈4),𝑈1) = min {𝑑((𝑈3,𝑈6,𝑈2,𝑈5),𝑈1), 𝑑(𝑈4,𝑈1)} 

= min{0.22 , 0.37} = 0.22 

 

Diperoleh tabel jarak antar klaster yang baru sebagai berikut : 

 

Tabel 2.9 Jarak Antar Klaster pada Iterasi Ke-4 

 𝑈1 𝑈3, 𝑈6, 𝑈4, 𝑈2, 𝑈5 

𝑈1 0  

𝑈3, 𝑈6, 𝑈2, 𝑈5, 𝑈4 0.22 0 

 

Jika jumlah klaster yang ingin dibentuk sebanyak 2 klaster, maka perhitungan 

dapat dihentikan pada Iterasi 4 dengan klaster yang terbentuk berdasarkan Tabel 

2.9 yaitu klaster 𝑈1 dan klaster (𝑈3, 𝑈6, 𝑈2, 𝑈5, 𝑈4). 

 

Validasi Dengan Menggunakan Matlab 

Dengan menggunakan syntax berikut, data akan diklaster kedalam 2,3,4, dan 5 

klaster. 

 

 

 

dimana 𝑐 adalah banyaknya klaster yang ingin dibentuk. 

 

A = pdist (DATA); 
B = linkage (DATA,'single'); 
D = cluster (B,'Maxclust', c); 
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Tabel 2.10 Hasil Klasterisasi dengan Matlab 

Data 
Jumlah Klaster 

2 3 4 5 

𝑈1 1 1 1 1 

𝑈2 2 2 2 2 

𝑈3 2 2 3 3 

𝑈4 2 3 4 4 

𝑈5 2 2 2 5 

𝑈6 2 2 3 3 

 

Berdasarkan Tabel 2.10, diketahui bahwa untuk 2 klaster yang terbentuk, 𝑈1 

berada pada klaster 1 dan 𝑈2. 𝑈3, 𝑈4, 𝑈5  dan 𝑈6  berada pada klaster 2. Untuk 3 

klaster yang terbentuk, 𝑈1  berada pada klaster 1, 𝑈2. 𝑈3, 𝑈5  dan 𝑈6  berada pada 

klaster 2, dan 𝑈4 berada pada klaster 3 dan seterusnya. 

 

2.23 Index Davies-Bouldin 

Index Davies-Bouldin (IDB) merupakan salah satu metode untuk 

mengevaluasi klaster dalam metode pengelompokkan data dengan skema evaluasi 

klaster internal, dimana baik tidaknya sebuah klaster dapat dilihat dari kuantitas dan 

jarak antar klaster. Index Davies-Bouldin (IDB) memaksimalkan jarak antar kalster 

dan meminimalkan jarak antar data pada sebuah klaster. Sehingga jika nilai Index 

Davies-bouldin (IDB) semakin kecil maka hasil klaster yang diperoleh semakin 

optimal. Nilai Index Davies-bouldin dirumuskan sebagai berikut : 

 

𝐼𝐷𝐵 =
1

𝑘
∑𝑅𝑖

𝑘

𝑖=1

 (2.19) 

 

dengan 

 

𝑅𝑖 = max
𝑗=1,…,𝑘,𝑖≠𝑗

𝑅𝑖𝑗 
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dan 

 

𝑅𝑖𝑗 =
𝑆𝑆𝑊𝑖 + 𝑆𝑆𝑊𝑗

𝑆𝑆𝐵𝑖𝑗
 (2.20) 

 

dengan 

𝐼𝐷𝐵 : Indeks Davies-bouldin 

𝑘 : Jumlah klaster 

𝑅𝑖 : Nilai 𝑅𝑖𝑗 maksimum untuk setiap klaster 

𝑅𝑖𝑗 : Ukuran kemiripan antara klaster 𝑖 dengan klaster 𝑗 

𝑆𝑆𝑊𝑖  : Jarak rata-rata antara anggota pada klaster 𝑖 terhadap pusat klaster 𝑖 

𝑆𝑆𝐵𝑖𝑗  : jarak pusat klaster 𝑖 ke pusat klaster 𝑗  

Untuk menghitung jarak pusat klaster 𝑖  ke pusat klaster 𝑗  dapat dihitung 

dengan menggunakan Persamaan (2.8) sehingga 𝑆𝑆𝐵𝑖𝑗 dapat dirumuskan sebagai 

berikut : 

 

𝑆𝑆𝐵𝑖𝑗 = 𝑑(𝑐𝑖,𝑐𝑗)
 (2.21) 

 

dan 𝑆𝑆𝑊𝑖  dapat dirumuskan sebagai berikut : 

 

𝑆𝑆𝑊𝑖 = [
1

𝑛𝑖
∑(𝑑(𝑥𝑡,𝑐𝑖)

)
2

𝑛𝑖

𝑡=1

]

1
2

, 𝑥𝑡 ∈ 𝑖 (2.22) 

 

dengan 

 

𝑐𝑖 =
1

𝑛𝑖
∑𝑥𝑡

𝑛𝑖

𝑡=1

 , 𝑥𝑡 ∈ 𝑖 (2.23) 

 

Di mana 

𝑐𝑖 : Titik pusat klaster 𝑖 

𝑛𝑖 : Jumlah anggota klaster 𝑖 
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Langkah-langkah untuk mengevaluasi hasil klaster yang terbentuk dengan 

Index Davies-Bouldin sebagai berikut : 

1. Tentukan titik pusat untuk setiap klaster, 

2. Hitung jarak rata-rata antara anggota pada klaster 𝑖 terhadap pusat klaster 𝑖, 

3. Hitung jarak pusat klaster 𝑖 ke pusat klaster 𝑗, 

4. Hitung ukuran kemiripan antara klaster 𝑖 dengan klaster 𝑗, 

5. Tentukan nilai 𝑅𝑖𝑗 maksimal untuk setiap klaster, 

6. Hitung nilai Index Davies-Bouldin 

 

Contoh 2.11 

Berapa jumlah klaster optimum yang terbentuk untuk contoh 2.10. 

 

Penyelesaian 

Evalusi hasil klaster untuk 2 klaster dengan Index Davies-Bouldin. Berdasarkan 

Tabel 2.10 untuk 2 klaster sebagai berikut : 

 

Tabel 2.11 Klaster yang Terbentuk 

Data X Y Klaster 

𝑈1 0.40 0.53 1 

𝑈2 0.22 0.38 2 

𝑈3 0.35 0.32 2 

𝑈4 0.26 0.19 2 

𝑈5 0.08 0.41 2 

𝑈6 0.45 0.30 2 

 

Kemudian dicari titik pusat 𝑐1 dan 𝑐2 dengan menggunakan Persamaan (2.23). 

Untuk 𝑐1 

 

𝑥̅ =
0.40

1
= 0.40 

𝑦̅ =
0.53

1
= 0.53 
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Untuk 𝑐2 

 

𝑥̅ =
(0.22 + 0.35 + 0.26 + 0.08 + 0.45)

5
= 0.272 

𝑦̅ =
(0.38 + 0.32 + 0.19 + 0.41 + 0.30)

5
= 0.32 

 

Sehingga diperoleh titik pusat 𝑐1 dan 𝑐2 sebagai berikut : 

 

Tabel 2.12 Titik Pusat 

Titik Pusat X Y 

𝑐1 0.4 0.53 

𝑐2 0.272 0.320 

 

Kemudian akan dicari jarak rata-rata antara anggota pada klaster 1 terhadap pusat 

klaster 1 dengan menggunakan Persamaan (2.22). 

 

𝑑(𝑈1,𝐶1) = [(0.40 − 0.4)2 + (0.53 − 0.53)2]
1
2 = 0 

𝑆𝑆𝑊1 = [(𝑑(𝑈1,𝐶1))
2
]

1
2

= [(0)2]
1
2 = 0 

 

Kemudian akan dicari jarak rata-rata antara anggota pada klaster 2 terhadap pusat 

klaster 2 dengan menggunakan Persamaan (2.22). 

 

𝑑(𝑈2,𝐶2) = [(0.22 − 0.272)2 + (0.38 − 0.32)2]
1
2 = 0.0794 

𝑑(𝑈3,𝐶2) = [(0.35 − 0.272)2 + (0.32 − 0.32)2]
1
2 = 0.078 

𝑑(𝑈4,𝐶2) = [(0.26 − 0.272)2 + (0.19 − 0.32)2]
1
2 = 0.13055 

𝑑(𝑈5,𝐶2) = [(0.08 − 0.272)2 + (0.41 − 0.32)2]
1
2 = 0.21205 

𝑑(𝑈6,𝐶2) = [(0.45 − 0.272)2 + (0.30 − 0.32)2]
1
2 = 0.17912 
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𝑆𝑆𝑊2 = [
(𝑑(𝑈2,𝐶2))

2
+ (𝑑(𝑈3,𝐶2))

2
+ (𝑑(𝑈4,𝐶2))

2
+ (𝑑(𝑈5,𝐶2))

2
+ (𝑑(𝑈6,𝐶2))

2

5
]

1
2

 

= [
(0.0794)2 + (0.078)2 + (0.13055)2 + (0.21205)2 + (0.17912)2

5
]

1
2

 

= [
0.0063 + 0.0061 + 0.017 + 0.04496 + 0.0321

5
]

1
2

= [0.021296]
1
2 

= 0.145931 

 

Kemudian hitung jarak pusat klaster 1 ke pusat klaster 2 dengan menggunakan 

Persamaan (2.21). 

 

𝑆𝑆𝐵12 = [(0.4 − 0.272)2 + (0.53 − 0.32)2]
1
2 

= 0.245935 

 

Kemudian hitung ukuran kemiripan antara klaster 1  dengan klaster 2  dengan 

menggunakan Persamaan (2.20). 

 

𝑅12 =
(0 + 0.145931)

0.245935
= 0.593374 

 

Ukuran kemiripan yang sudah diperoleh kemudian akan dibentuk menjadi 

sebuah tabel. Dimana tabel yang terbentuk nantinya akan digunakan untuk 

menentukan ukuran kemiripan maksimal untuk setiap klaster. 

 

Tabel 2.13 Ukuran Kemiripan 

 1 2 𝑅 maksimum 

1 0 0.593374 0.593374 

2 0.593374 0 0.593374 

 

Berdasarkan Tabel 2.13, dapat diketahui bahwa ukuran kemiripan klaster 1 

dengan klaster 2 sebesar 0.593374. Sehingga diperoleh 𝑅 maksimum untuk klaster 
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1 dan klaster 2 sebesar 0.593374. Dengan menggunakan Persamaan (2.19) 

diperoleh nilai Index Davies Bouldin, 

 

𝐼𝐷𝐵 =
(0.593374 + 0.593374)

2
= 0.593374 

 

Validasi menggunakan Software RStudio 

 

 

Dimana 𝑘 adalah jumlah klaster yang terbentuk. 

Diperoleh nilai Index Davies-Bouldin untuk jumlah klaster sebanyak 2 klaster 

yaitu 0.593374. 

 

 

Gambar 2.9 Evaluasi Klaster dengan R Studio 

 

Kemudian dengan syntax yang serupa akan dicari nilai Index Davies-Bouldin 

untuk jumlah klaster sebanyak 3,4 dan 5 klaster. Sehingga diperoleh nilai Index 

Davies-Bouldin untuk jumlah klaster sebanyak 2,3,4 dan 5 klaster sebagai berikut: 

library(ggplot2) 

library(factoextra) 

library(tidyverse) 

library(cluster) 

library(MVN) 

library(scales) 

library(fpc) 

library(clusterSim) 

library(dendroextras) 

dt=read.delim("clipboard") 

dt1=scale(dt) 

jarak=dist(x=dt1, method = "euclidean") 

single1=hclust(jarak, method = "single") 

Kelompok = cutree(single1,  k = 2) 

tabel = cbind(dt1,Kelompok) 

dbi = index.DB(x=dt,Kelompok,jarak,centrotypes = "centroids") 

dbi$DB 
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Tabel 2.14 Nilai Index Davies-Bouldin 

Jumlah 

Klaster 
IDB 

2 0.593374 

3 0.82018 

4 0.3720298 

5 0.2401896 

 

Berdasarkan Tabel 2.14, nilai IDB untuk 2 klaster sebesar 0.593374. Nilai 

IDB untuk 3 klaster sebesar 0.82018. Nilai IDB untuk 4 klaster sebesar 0.3820298 

dan nilai IDB untuk 5 klaster sebesar 0.2401896. Karena nilai IDB untuk 5 klaster 

merupakan nilai IDB terkecil sebesar 0.2401896, maka diperoleh jumlah klaster 

optimum yaitu sebanyak 5 klaster. 

  


