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2.1 Himpunan

Definisi 2.1 (Munir, 2010)

Himpunan adalah sekumpulan objek yang berbeda tetapi memiliki sifat yang dapat
didefinisikan dengan jelas.

Objek-objek yang terdapat di dalam suatu himpunan disebut sebagai elemen
atau anggota himpunan. Himpunan dinotasikan dengan huruf kapital, seperti
A, B, C, dan sebagainya. Sedangkan elemen atau anggota himpunan dinotasikan
dengan huruf kecil, seperti a, b, c, dan sebagainya. Elemen atau anggota suatu
himpunan ditulis di antara kurung kurawal dan dipisahkan dengan tanda koma.
Misalkan terdapat suatu himpunan S dengan anggota himpunan a dan b, maka
himpunan S dapat ditulis sebagai S = {a, b} dan elemen-elemennya dinotasikan

sebagai a, b € S dibaca a dan b elemen atau anggota dari himpunan S.

2.2 Fungsi
Definisi 2.2 (Varberg dkk., 2010)
Sebuah fungsi f adalah suatu aturan korespondensi yang menghubungkan setiap
obyek x dalam satu himpunan, yang disebut daerah asal (domain), dengan sebuah
nilai tunggal f(x) dari suatu himpunan kedua. Himpunan nilai yang diperoleh
secara demikian disebut daerah hasil fungsi (range).

Suatu fungsi dapat dinotasikan dengan sebuah huruf tunggal seperti f (atau g
atau F). f (x) dibaca “f dari x” atau “f pada x”, menunjukkan nilai yang diberikan
oleh f kepada x. Jadi, jika f (x) = x3 — 4, maka

fQ)=22—-4=4
fla) =a® -4
fla+h)=(a+h)®—4=a3+3ah?*+3a’*h+h3—4

untuk sebuah persamaan berbentuk y = f(x), x disebut variabel bebas dan y

disebut variabel terikat.



Definisi 2.3 (Varberg dkk., 2010)
Misalkan a bilangan positif bukan 1, Maka

y=log,x ®x=a”

Sifat-sifat fungsi logaritma umum :

1. log,x =Inx

Inx
2.1 =—=
08a X Ina

Definisi 2.4 (Varberg dkk., 2010)

Fungsi logaritma alami dinyatakan oleh In, didefinisikan oleh
X
1
Inx = f?dt,x >0
1

daerah asal fungsi logaritma alami adalah himpunan bilangan real positif.
Sifat-sifat fungsi logaritma alami :

Jika a dan b bilangan-bilangan positif dan r sebuah bilangan rasional, maka
1.In1=0

2.Iny=Ina—Inb

3. Inab=Ina+1Inb

4, Ina" =rlna

Definisi 2.5 (Varberg dkk., 2010)

Untuk a > 0 dan bilangan real bilangan x,

aX = eXIna
Sifat-sifat fungsi eksponen umum :

Jikaa > 0,b > 0, dan x dan y bilangan real, maka

1. a*a¥ = a**Y



2. (@)Y =a™v
a\”* a*

3.(5) =4
a* _

4, ; =qa*V

5. (ab)* = a*b*

Definisi 2.6 (Varberg dkk., 2010)

Invers In disebut fungsi eksponen alami dan dinyatakan oleh exp, jadi
x=expy©©y=lInx

Sifat-sifat fungsi eksponen alami:

1. Huruf e menyatakan bilangan real positif unik demikian sehinggalne = 1
2. Untuk semua nilai x (rasional maupun irrasional), e* = exp x

3. e =x x>0

4. In(e”) =y, untuk semua y

2.3 Fungsi Dua Variabel

Misalkan suatu fungsi f merupakan fungsi dengan dua variabel, maka fungsi
f memadankan setiap pasangan terurut (x,y) pada suatu himpunan D dari bidang
dengan bilangan real (tunggal) f(x,y). Himpunan D disebut daerah asal fungsi.
(Varberg dkk., 2011)
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Gambar 2.1 Fungsi Dua Variabel



Grafik dari fungsi f dengan dua variabel atau grafik persamaan z = f(x,y).
Biasanya grafik berupa suatu permukaan seperti Gambar 2.1, karena setiap (x, y)
didaerah asal hanya berpadanan dengan satu nilai z, maka setiap garis tegaklurus

bidang-xy memotong permukaan pada paling banyak satu titik.

Contoh 2.1
Misalkan f (x,y) = x? + 3y2. Tentukan nilai f(—1,4).

Penyelesaian
f(=1,4) = (-1)2+3(4)2 =1+ 3(16) = 49

2.4 Limit
Definisi 2.7 (Varberg dkk., 2010)

Untuk mengatakan bahwa }Cin} f(x) =L, berarti bahwa ketika x dekat tetapi

berlainan dari ¢, maka f(x) dekat ke L.

Contoh 2.2
Carilah lim(4x — 5)
x—3

Penyelesaian
Ketika x dekat 3; maka 4x — 5 dekat terhadap 4 x 3 — 5 = 7. Dapat ditulis

lim(4x —5)=7
x—3

Definisi 2.8 (Varberg dkk., 2010)
Untuk mengatakan bahwa lim_f(x) = L berarti bahwa ketika x dekat tetapi pada
X—=C

sebelah kanan ¢, maka f(x) dekat ke-L. Demikian pula, untuk mengatakan bahwa

xlir?_ f(x) = L berarti bahwa ketika x dekat tetapi pada sebelah kiri ¢, maka f (x)

adalah dekat ke-L.



2.5 Turunan
Definisi 2.9 (Varberg dkk., 2010)
Turunan fungsi f adalah fungsi lain f’(dibaca ““f aksen”) yang nilainya pada

sebarang bilangan ¢ adalah

fle+h)—f()
h

f'© =
Asalkan limit ini ada dan bukan oo atau —oo.

Contoh 2.3
Misalkan f(x) = 13x — 6. Carilah f'(4).

Penyelesaian

f+h) —f4)

f'(4) = lim

h

134+ h)—-6—-(13(4) —6)
= l1im

h—0 h
_ i 130
R
=l]im 13 =13

h—0

Sifat-sifat turunan:

1. Jika f(x) = k, dengan k suatu konstanta maka untuk sebarang x, f'(x) = 0

2. Jika f(x) =x, maka f'(x) =1

3. Jika f(x) = x™, dengan n bilangan bulat positif, maka f'(x) = nx™!

Jika k suatu konstanta dan fungsi f dan g adalah fungsi-fungsi yang
terdiferensiasikan, maka

4. (kf)'(x) = k- f'(x)

5. (f+9)(x) =f"(x)+g'(x)

6. (f —9)'(x) =f"(x) —g'(x)

7.(f-9)' @) =f)g' (x) + gl)f'(x)
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8. Jika f dan g adalah fungsi-fungsi yang terdifierensiasikan dengan g(x) # 0,

\' gOf' 0)—f()g' (x)
maka (E) (x) = PETeS)

2.6 Turunan Parsial

Misalkan f adalah suatu fungsi dua variabel x dan y. Jika y dijaga agar tetap
konstan, asumsikan y = y,, maka f (x, y,) adalah fungsi satu variabel x. Turunan
dari f di x = x, disebut turunan parsial f terhadap x di (x,,v,) dan dinotasikan
sebagai f, (x, vo). (Varberg dkk., 2011) Jadi,

x\X0,Yo) = Aam Ax

Dengan cara serupa, turunan parsial f terhadap y di (x,,y,) dinotasikan sebagai

fy (%0, ¥0) dengan

f(xo,¥0 + Ay) — f(x0,¥0)
Ay

fy (X0, ¥0) = Aljiglo

Contoh 2.4
Carilah £,,(1,2) dan £, (1,2) jika f (x, y) = x*y + 3y?

Penyelesaian
Untuk mencari f,(x,y), maka asumsikan y sebagai suatu konstanta kemudian
turunkan f terhadap x, sehingga diperoleh

fe(x,y) = 2xy + 0

Untuk (x,y) = (1,2), maka

f(1,2)=2-1-2=4
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Dengan cara yang serupa, diperoleh
fy(x,y) = x? + 9y?
Untuk (x,y) = (1,2), maka
f,(1,2) =12+9-22 =37

2.7 Notasi Sigma

Definisi 2.10 (Varberg dkk., 2010)

Notasi sigma atau ), menyatakan penjumlahan semua bilangan berbentuk seperti
yang ditunjukkan dengan indeks i, dimana indeks i terus meningkat dimulai dari
bilangan bulat yang berada di bawah ), dan berakhir dengan bilangan bulat yang

berada diatas Y seperti yang ditunjukkan sebagai berikut:

5

Zai=a1+a2+a3+a4+a5
i=1

Sifat-sifat sigma:

Jika ¢ suatu konstanta, maka

1. Y, c=nc

2. Yiica; =cyimq

3. Yiz1la; + b)) = Yizia; + ity by
4. ¥iei(a; —b) =X a; — Xz b;

2.8 Integral
Definisi 2.11 (Varberg dkk., 2010)
Kita sebut F suatu anti-turunan f pada interval I jika F'(x) = f(x) untuk semua x

dalam I.

Contoh 2.5

Carilah anti-turunan umum dari f (x) = x? pada (—oo, ).
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Penyelesaian
Akan dicari suatu fungsi F yang memenuhi F'(x) = x? untuk semua x real.

Berdasarkan diferensiasi, fungsi F(x) = x3 tidak akan memenuhi, karena turunan

dari F(x) adalah 3x2. Tetapi nilai F'(x) = 3x2 merujuk pada F(x) = §x3, karena
turunan dari F(x) = éxz memenuhi F'(x) = é -3x2 = x2. Sehingga diperoleh

. . 1
anti-turunan umumnya yaitu -x* + c.

Sifat-sifat integral:
Misalkan f dan g mempunyai anti-turunan (integral tak tentu) dan misalkan k

suatu konstanta. Maka

1 [kf(x)dx =k [ f(x)dx

2. [If () + g(ldx = [ f(x)dx + [ g(x)dx
3. JIf ) —g)]ldx = [ fC)dx — [ g(x) dx

Definisi 2.12 (Varberg dkk., 2010)

Misalkan f suatu fungsi yang didefinisikan pada interval tertutup [a, b]. Jika

n
lim Ef(fl)Axl
lIpl|-0 &

ada, asumsikan f adalah fungsi yang terintegrasikan pada [a, b]. Lebih lanjut

f:f(x)dx, disebut integral tentu f dari a ke b, ditulis sebagai

b n
af F()dx = “glrlg();f(mxi

Sifat-sifat integral tentu:
1. f;f(x)dx =0

2. [0 f(x)dx = — [ fF()dx,a > b
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3. [Cf(dx = [) FO)dx + [ f(x)dx
Misalkan f dan g terintegrasikan pada [a, b] dan k adalah konstanta. Maka

4. [Pkf()dx =k [} f(x)dx
5. f;[f(x) + g(x)]dx = f;f(x)dx + f;g(x)dx

6. [ [f(x) — g()ldx = [, f(x)dx — [7 g(x)dx

2.9 Peluang dan Ruang Sampel

Definisi 2.14 (Walpole d Myers, 1995)

Himpunan semua kemungkinan hasil yang memungkinkan dari suatu percobaan
statistika disebut ruang sampel dan dilambangkan dengan huruf S.

Setiap kemungkinan hasil dalam suatu ruang sampel disebut unsur atau
anggota ruang sampel tersebut atau biasanya disebut dengan titik sampel. Jika
banyaknya unsur ruang sampel berhinggass, maka unsur-unsur tersebut dapat
didaftarkan dalam bentuk himpunan. Jadi ruang sampel S dari percobaan
pelemparan sekeping uang logam yaitu G (gambar) dan A (angka), atau dapat

ditulis sebagai
S =1{G, A}

Definisi 2.15 (Walpole, 2005)

Suatu kejadian adalah himpunan bagian dari ruang sampel.

Definisi 2.16 (Walpole & Myers, 1995)
Peluang suatu kejadian A adalah jumlah peluang semua titik sampel dalam A.

Dimana,
0<P(A)<1,P(@)=0P(S)=1.

Teorema 2.1 (Walpole, 2005)
Jika banyaknya ruang sampel dinotasikan dengan n(S) dan banyaknya kejadian

dinotasikan dengan n(A). Maka peluang kejadian A adalah
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B n(4)
~n(S)

P(4)
2.10 Peubah Acak
Definisi 2.17 (Walpole, 2005)
Suatu fungsi yang nilainya berupa bilangan riil yang ditentukan oleh setiap unsur
dalam ruang sampel disebut peubah acak.

Definisi 2.18 (Walpole, 2005)
Bila suatu ruang sampel mengandung jumlah titik sampel yang berhingga atau suatu
barisan unsur yang tidak pernah berakhir tetapi sama banyaknya dengan bilangan

cacah, maka ruang itu disebut ruang sampel diskret.

Definisi 2.19 (Walpole, 2005)
Bila suatu ruang sampel mengandung tak hingga banyaknya titik sampel yang sama
dengan banyaknya dengan banyaknya titik pada sebuah ruas garis, maka ruang itu

disebut ruang sampel kontinu.

2.11 Populasi dan Sampel
Definisi 2.20 (Walpole, 2005)
Populasi adalah keseluruhan pengamatan yang menjadi perhatian kita.

Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi.

Definisi 2.21 (Walpole, 2005)
Sampel adalah suatu himpunan bagian dari populasi.

2.12 Distribusi Probabilitas

Definisi 2.22 (Walpole dan Myers, 1995)

Misalkan X adalah peubah acak diskret, maka fungsi f(x) disebut dengan
distribusi probabilitas atau fungsi kepadatan peluang dari sebuah peubah acak X,
yang mempunyai syarat-syarat sebagai berikut:

1. f(x) =0
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2. Y. fx) =1
3. PX=x)=f(x)

Fungsi distribusi kumulatif dari X dinotasikan dengan F(x), dan didefinisikan

sebagai berikut:

F(x) = P(X < %) =Zf(t),—oo<x<oo

t<x

Definisi 2.23 (Walpole dan Myers, 1995)
Misalkan fungsi f(x) adalah fungsi kepadatan peluang dari peubah acak kontinu
X, yang didefinisikan pada himpunan semua bilangan real, jika

1. f(x) = 0 untuk semua x € (—oo, )
2. [C f)dx =1

3. Pla<X<b)=[ fx)dx

Fungsi distribusi kumulatif dari X dinotasikan dengan F(x), dan didefinisikan

sebagai berikut:

X
Fx)=PX<x) = ff(t)dt,—oo <x<o
-0
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Gambar 2.2 Grafik Fungsi Kepadatan Peluang Distribusi Gamma
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Gambar 2.2 menunjukkan grafik fungsi kepadatan peluang distribusi Gamma
dengan nilai parameter skala konstan pada 2 dan nilai parameter bentuk bergerak

dari 1 sampai 2.5.
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Gambar 2.3 Grafik Fungsi Distribusi Kumulatif Distribusi Gamma

Gambar 2.3 menunjukkan grafik fungsi distribusi kumulatif distribusi Gamma
dengan nilai parameter skala konstan pada 2 dan nilai parameter bentuk bergerak
dari 1 sampai 2.5.

2.13 Beberapa Distribusi Kontinu

2.13.1 Distribusi Erlang

Definisi 2.24 (Thomopoulos, 2017)

Sebuah peubah acak X dikatakan berdistribusi Erlang (a, 8), jika fungsi kepadatan

peluangnya berbentuk:

f(x)=mxa-lexp<—(g>>,x20,ﬁ>0,aEZ (2.1)

dan fungsi distribusi kumulatif distribusi Erlang («, 8) berbentuk :

X

|

0

t

F(x) = tmle Bdt
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dengan
a = parameter bentuk

B = parameter skala

2.13.2 Distribusi Fatigue Life

Definisi 2.25

Sebuah peubah acak X dikatakan berdistribusi Fatigue Life (@, ), jika fungsi
kepadatan peluangnya berbentuk:

x, |B
f(x)z%;cp % \/%—\/é ,x>0,a>0,8>0 (2.2)

dan fungsi distribusi kumulatif distribusi Fatigue Life («, 8) berbentuk :

_ 1 [x B
F(X)—Cp E \]%—\E

dengan
a = parameter bentuk
B = parameter skala
¢ = fungsi kepadatan peluang distribusi Normal standard
@ = fungsi distribusi kumulatif distribusi Normal standard
Distribusi normal standard adalah distribusi Normal dengan nilai parameter

u = 0 dan parameter ¢ = 1.

2.13.3 Distribusi Frechet
Definisi 2.26
Sebuah peubah acak X dikatakan berdistribusi Frechet («, ), jika fungsi kepadatan

peluangnya berbentuk:
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fx) =%<§)a+1exp<— (§>“> ,X>0,a>0,8>0

dan fungsi distribusi kumulatif distribusi Frechet (a, ) berbentuk :

F(x) = exp (— (i—;)a>

dengan
a = parameter bentuk

B = parameter skala

2.13.4 Distribusi Gamma
Definisi 2.27 (Walpole dan Myers, 1995)

(2.3)

Sebuah peubah acak X dikatakan berdistribusi Gamma (a,B), jika fungsi

kepadatan peluangnya berbentuk:

1 1 x
f(x):ﬁ“F(a)x exp(—(ﬁ>>,x>0,a>0,ﬁ>0

dan fungsi distribusi kumulatif distribusi Gamma (a, 8) berbentuk :

X
1 _t
- a=-1, B
PO = Zares f te-1¢Bde
0
dengan
['(a) = fungsi gamma
a = parameter bentuk
B = parameter skala

(2.4)
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Definisi 2.28 (Walpole dan Myers, 1995)

Fungsi gamma didefinisikan sebagai

[}

I'a) = f e *x*1dx ,a>0
0

2.13.5 Distribusi Log-Logistik

Definisi 2.29

Sebuah peubah acak X dikatakan berdistribusi Log-Logistik (a, 8), jika fungsi
kepadatan peluangnya berbentuk:

-2

f(x)=(%)(%>a_1(1+(;—g)a) ,x>0,a>0,8>0 (2.5)

dan fungsi distribusi kumulatif distribusi Log-Logistik («, ) berbentuk :

Fer= 1+ (g)“)”

dengan
a = parameter bentuk

B = parameter skala

2.13.6 Distribusi Pareto

Definisi 2.30

Sebuah peubah acak X dkatakan berdistribusi Pareto (a, B), jika fungsi kepadatan
peluangnya berbentuk:

a

f(x)=ja—ﬂ+1,ﬁSx<+oo (2.6)
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dan fungsi distribusi kumulatif distribusi Pareto (a, ) berbentuk :

rw=1-f)

dengan
a = parameter bentuk (a > 0)

B = parameter skala (8 > 0)

2.13.7 Distribusi Pearson Tipe 5

Definisi 2.31

Sebuah peubah acak X dikatakan berdistribusi Pearson Tipe V (a, B), jika fungsi
kepadatan peluangnya berbentuk:

exp(-£)

(x) = a+l
o)

x>0 (2.7)

dan fungsi distribusi kumulatif distribusi Pearson Tipe V («, B) berbentuk :

Ig(a)

F(x) = lf(a)

dengan
a = parameter bentuk (a > 0)

[ = parameter skala (8 > 0)

2.13.8 Distribusi Weibull
Definisi 2.32 (Walpole dan Myers, 1995)
Sebuah peubah acak X dikatakan berdistribusi Weibull (a, ), jika fungsi

kepadatan peluangnya berbentuk:
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f(x)=%<%)a_1exp(—(%>a),x>0,a>0,ﬁ>0 (2.8)

dan fungsi distribusi kumulatif distribusi Weibull («, ) berbentuk :

F(x) = 1— exp (— (%)a)

dengan
a = parameter bentuk

B = parameter skala

2.14 Parameter
Definisi 2.33 (Walpole, 2005)

Sebarang nilai yang menjelaskan ciri populasi disebut parameter.

Secara umum parameter dilambangkan dengan huruf yunani dan merupakan
suatu konstanta yang menjelaskan populasi. Terdapat beberapa jenis parameter
yang biasa digunakan dalam ilmu peluang, seperti mean, standard deviasi,
parameter skala, parameter bentuk, parameter lokasi, dan sebagainya.

Parameter skala dan parameter bentuk adalah jenis khusus parameter numerik dari
kelurga parametrik dimana parameter skala menunjukkan besarnya jangkauan data.
Semakin besar nilai parameter skala maka distribusi data akan semakin menyebar
begitu pun sebaliknya. Berbeda dengan parameter skala, parameter bentuk
menunjukkan bentuk sebaran data. Semakin besar nilai parameter bentuk maka data
akan cenderung menyebar pada suatu interval tertentu begitu pun sebaliknya.

Misalkan sebuah peubah acak X dikatakan berdistribusi Normal dengan parameter

u dan o, maka fungsi kepadatan peluangnya berbentuk:

N
e(%)(%) r—oo < x < o0

)

fx) =

2o
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dengan parameter lokasi yaitu mean atau yang biasa ditulis dengan p, dan

paramerter skala yaitu standard deviasi atau yang biasa ditulis dengan . Parameter

u dari distribusi Normal menunjukkan letak puncak dari grafik fungsi kepadatan

peluang. Sedangkan parameter o dari distribusi Normal menunjukkan bentuk

grafik fungsi kepadatan peluang. Semakin besar parameter o, maka grafik yang

dihasilkan akan semakin pendek dan melebar, begitu pun sebaliknya. Seperti yang

terlihat pada ambar 2.2. Ketika nilai parameter u = 1, maka puncak grafik berada

pada x = 1. Sedangkan ketika nilai parameter ¢ = 2, maka puncak grafik berada

pada x = 2. Kemudian berdasarkan gambar 2.2 terlihat bahwa ketika nilai

parameter o, bergerak dari 1 ke 3, maka grafik yang dihasilkan semakin pendek dan

melebar.

0.4

0.35

0.3

0.25

0.2

—— mu=1sigma=1|

mu=1sigma=2| 4
mu =2 sigma = 1

——— mu=2sigma=3|

Gambar 2.4 Grafik Fungsi Kepadatan Peluang Distribusi Normal

2.15 Metode Newton-Raphson

Metode newton-raphson adalah salah satu metode pendekatan dalam mencari

akar-akar sebuah persamaan. Terdapat dua jenis pendekatan untuk menurunkan

rumus newton-raphson, yaitu secara geometri dan dengan bantuan deret taylor.

Penurunan rumus newton-raphson secara geometri sebagai berikut:
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Y=g

<— Garis singgung kurva dix,
dengan gradien =/"(x))

= ¥

Gambar 2.5 Penurunan Newton-Raphson

Dari gambar diatas gradien garis singgung di x; adalah

iy Ay fl) -0
m =10 A X — Xy
atau
' _ f(x)
fix) = Xi = Xi41

Sehingga diperoleh rumus newton-raphson sebagai berikut:

f(x:)

Xi+1 = Xj ,(x)
i

(2.9)

Misalkan x; adalah nilai hampiran terhadap nilai sejati x;,;, maka selisih dari

x;4+1 dan x; disebut galat dan biasanya dinotasikan dengan €. Jika tanda galat

(positif atau negatif) tidak dipertimbangkan, maka disebut galat mutlak dan

didefinisikan sebagai berikut :

€= Xi+1 — Xj
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dan galat relatif didefinisikan sebagai berikut:

_ |41 — xil

|2 411

Menurut Epperson (2013)
Langkah-langkah mencari akar suatu fungsi dengan metode newton-raphson
adalah:
1. Menentukan nilai x,
2. Mentukan turunan pertama dari f (x),
3. Mentukan nilai x;,; dengan menggunakan rumus newton-raphson,
4. Dilakukan iterasi sebanyak i kali hingga nilai galat relatif hampiran kurang dari
galat relatif yang sudah ditentukan,

5. Maka pada iterasi ke-i, diperoleh x;,, akar persamaan dari f (x).

Contoh 2.6
Tentukan salah satu akar persamaan linier x> + 2x2 — 4 = 0 dengan metode

newton-raphson dengan kesalahan relatif hampiran sebesar 0.001.

Penyelesaian

Diketahui f(x) = x> + 2x2 — 4 dan ¢ = 0.001.

Maka f'(x) = 5x* + 4x

Pilih nilai awal x, = 1, maka diperoleh
f)=15+2(1)?-4=1+2—-4=-1

Dan,

') =5(1)*+41)=5+4=9

25



Iterasi ke-1

Hitung hampiran akar pertama.

_ flo) _, f@O 1 10 _
xl—xo—m—l—m—1+9— 9 =1.111

Kemudian hitung kesalahan relatif &,

1.111 -1 0.111
1.111 1.111

X1 — Xp

& =

X1

Karena kesalahan relatif &; = 0.1 > 0.001, maka perhitungan dilanjutkan ke

Iterasi ke-2.

Iterasi ke-2

Hitung hampiran akar selanjutnya x,

flx) = f(1.111) = (1.111)° + 2(1.111)% — 4 = 0.16265
f'(x) = f'(1.111) = 5(1.111)* + 4(1.111) = 12.065

_ oSG JACBERY) 0.16265
X2 = X1~ ey = L1~ Famay = 1111 - S5 = 1.09763

Kemudian hitung kesalahan relatif &,

Xy — X
z -1 =0.01228

|1.09763 —-1111
&y = =

1.09763

X2

Karena kesalahan relatif e, = 0.01228 > 0.001, maka perhitungan dilanjutkan ke

Iterasi ke-3.

Iterasi ke-3

Hitung hampiran akar selanjutnya x5
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f(x,) = £(1.09763) = (1.09763)° + 2(1.09763)% — 4 = 0.00283
f'(x3) = '(1.09763) = 5(1.09763)* + 4(1.09763) = 11.6482

~ flx) 09763 £(1.09763) 09763 0.00283
BERTEGY T £(1.09763) 11.6482
x; = 1.09739

Kemudian hitung kesalahan relatif &5

X3 — X3

= 0.000221

|1.09739 — 1.09763
&3 =

1.09739

X3

Karena kesalahan relatif ¢35 = 0.000221 < 0.001, maka perhitungan dihentikan
pada Iterasi ke-3. Diperoleh salah satu akar dari persamaan x° +2x2—4 =0
adalah x = 1.09739.

2.16 Metode Estimasi Kemungkinan Maksimum

Metode Estimasi Kemungkinan Maksimum adalah teknik pendugaan
parameter dengan memaksimumkan fungsi Likelihood-nya. Misalkan pada suatu
kejadian di mana X hanya dapat mengambil sebagian nilai terbilang x4, x5, ...,
dengan Pg(x) = Pg{X = x} , dan ingin menentukan nilai 6 terbaik, di mana
nantinya nilai 8 akan digunakan untuk menghasilkan nilai x yang diamati. Hal ini
menyarankan untuk mempertimbangkan untuk setiap nilai & yang memungkinkan,
berapa besar kemungkinan terjadinya x yang diamati, jika 6 merupakan nilai
sebenarnya. Semakin besar kemungkinannya, maka semakin banyak nilai 8 yang
terlibat ke dalam penjelasan yang menunjukkan bahwa 6 yang dimaksud
menghasilkan nilai x, dan semakin memungkinkan munculnya nilai 8. Maka dari
itu, Py yang digunakan untuk nilai X yang tetap sebagai fungsi dari 6 disebut
sebagai kemungkinan dari 6 yang kemudian dinotasikan sebagai L(68) (Lehmann &

Romano, 2005). Jika X4, X,, ..., X;, adalah sampel random dari f (x; 8) maka

L®) =] [rlo (2.10)
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Untuk mencari nilai MLE-nya, akan lebih mudah jika fungsi L(8)
diselesaikan dalam bentuk logaritma alami. Hal ini dimungkinkan karena fungsi
logaritma alami naik monoton pada (0, ), yang berarti fungsi L(8) dan fungsi
logaritma alami mempunyai ekstrem yang sama. Maka didefinisikan fungsi log-

likelihood sebagai berikut:

1(6) = In(L(8)) (2.11)

Langkah-langkah dalam melakukan estimasi parameter dengan Metode
Estimasi Kemungkinan Maksimum sebagai berikut (Olofsson & Andersson, 2012):

1. Tentukan fungsi likelihoodnya (L(8))
2. Bentuk L(8) ke dalam bentuk log- likelihood (1(8))

o1(6) _

3. Tentukan turunan dari [(8) terhadap 6, kemudian tetapkan 25 = 0

Contoh 2.7
Misalkan X;, X5, ..., X,, adalah sampel random dari distribusi poisson dengan

parameter 1. Tentukan nilai estimasi A dengan metode estimasi kemungkinan

maksimum.

Penyelesaian
Diketahui fungsi kepadatan peluang dari distribusi poisson sebagai berikut:

e—/’l X

f&x) =

:x=012,..:14>0
xl

Kemudian berdasarkan Persamaan (2.10) diperoleh fungsi likelihoodnya sebagai
berikut:

n

e ~A)xi
=] %
X;:

i=1
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e~ A ,12?=1 X
Ly =2

i=1 X!
Kemudian berdasarkan Persamaan (2.11) diperoleh bentuk fungsi log-

likelihoodnya sebagai berikut:

I[(A) =1n —

i=1 i

e —nAAZ?zl xil

n

= Ine ™ + In AZi=1 % — lnl_[xi!

i=1

n n
I[(A) =—-nl+ le- InA— ZInxl-!
i=1 i=1

Kemudian [(1) akan diturunkan secara parsial terhadap A dan dijadikan sama

dengan nol.

oW __ Tx_,
EY 2
_ Diz1 X
2
n .
i= %"l - X, (2.12)

Jadi diperoleh nilai estimasi A = X,,.

Misalkan terdapat data acak sebagai berikut:

Tabel 2.1 Data Acak

Data
9
1
10
6
1
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Kemudian akan dicari nilai 1. Berdasarkan Persamaan (2.12), maka diperoleh nilai

A sebesar 5.4.

n

i= i=1%Xi _ &
- — 4n
n
i 9+14+10+6+1 27 c 4
5 5 '
Validasi dengan Matlab
parameter = fitdist (data, 'poisson')
[h,p,kstat,cv]=kstest (data, 'CDF'', parameter)
Results:
Distribution: Poisson
Log likelihood: -15.9527
Domain: 0 <= v « Inf
Mean: 5.4
Variance: 5.4 =
Parameter Estimate 5S5td. Err. -
lambda 5.4 1.03923 ;

Gambar 2.6 Estimasi Parameter dengan Matlab
Dengan menggunakan Matlab, diperoleh nilai A sebesar 5.4, sama dengan

perhitungan manual.

2.17 Supremum dan Infimum

Definisi 2.34 (Bartle, 2011)

Misalkan S merupakan suatu himpunan tak kosong dan merupakan himpunan

bagian dari R.

1. Hipunan S dikatakan terbatas keatas jika terdapat suatu nilai u € R, sedemikian
sehingga s < u untuk semua s € S. Setiap nilai u yang memungkinkan disebut
sebagai batas atas himpunan S.

2. Hipunan S dikatakan terbatas kebawah jika terdapat suatu nilai w € R,
sedemikian sehingga w < s untuk semua s €S . Setiap nilai w yang

memungkinkan disebut sebagai batas bawah himpunan S.
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3. Sebuah himpunan dikatakan terbatas jika himpunan tersebut terbatas keatas dan
kebawah. Sebuah himpunan dikatakan tidak terbatas jika himpunan tersebut

tidak terbatas keatas dan kebawabh.

Definisi 2.35 (Bartle, 2011)

Misalkan S merupakan suatu himpunan bagian dari R.

a) Jika S terbatas keatas, maka terdapat sebuah nilai u yang merupakan supremum
(batas atas terkecil) dari S jika memenuhi :
1. u adalah batas atas dari S, dan
2. Jika v merupakan batas atas sebarang dari S, makau < v.

b) Jika S terbatas kebawah, maka terdapat sebuah nilai w yang merupakan
infimum (batas bawah terbesar) dari S jika memenuhi :
1. w adalah batas bawah dari S, dan

2. Jika t merupakan batas bawah sebarang dari S, makaw > t.

2.18 Uji Kolmogorov-Smirnov
Uji Kolmogorov-Smirnov atau yang biasa dikenal dengan uji KS adalah salah

satu teknik uji hipotesis statistik terkenal, yang memeriksa apakah suatu sampel
mengikuti sebaran dari distribusi probabilitas tertentu dengan membandingkan
fungsi empiris dan fungsi distribusi kumulatif yang diasumsikan. Hipotesis yang
akan diuji dalam penelitian ini adalah :

H, : Data mengikuti model sebaran distribusi tersebut.

H, : Data tidak mengikuti model sebaran distribusi tersebut.

dengan statistik uji yang digunakan adalah :

Dhitung = supy|F(x) — H(x)| (2.13)

Di mana

Dpirung - Jarak vertikal terjauh antara F (x) — H (x).

F(x)  :Fungsi distribusi kumulatif distribusi yang dihipotesiskan.
H(x) :Fungsi Empiris.
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dengan

frekuensi kumulatif X < x
n

H(x) = (2.14)

di mana n adalah jumlah data.

Dengan kriteria uji, jika nilai Dyizyng > Diqner dengan tingkat error sebesar
a, maka H, ditolak. Jika nilai Dyjtyng < Digper dengan tingkat error sebesar a,
maka H, diterima atau dengan kata lain data mengikuti model sebaran distribusi
tersebut.

Contoh 2.8

Pada Contoh 2.7 telah dilakukan estimasi parameter terhadap data acak pada Tabel
2.1. Diperoleh nilai A sebesar 5.4. Kemudian pada Contoh 2.8 ini akan dilakukan
uji hipotesis data diatas yang diasumsikan berdistribusi poisson dengan uji
kolmogorv-smirnov dengan hipotesis yang digunakan sebagai berikut :

H, : Data mengikuti model sebaran distribusi Poisson.

H, : Data tidak mengikuti model sebaran distribusi Poisson.

dan dengan taraf signifikan sebesar 0.05.

Penyelesaian

Tabel 2.2 Uji Kolmogorov-Smirnov Distribusi Poisson

Data | Frekuensi an‘;ﬂ?;‘tﬁ; FGo) | HGO | [FGo) = HGO|
1 2 2 0.0289 0.4 0.371094
6 1 3 0.701671 0.6 0.101671
9 1 4 0.95125 0.8 0.151245
10 1 5 0.977486 1 0.022514

Penjelasan Tabel 2.2
Susun data dari terkecil ke terbesar, kemudian hitung frekuensi dan frekuensi
kumulatif data. Lalu hitung nilai F(x) dengan menggunakan fungsi distribusi

kumulatif distribusi poisson.
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Diketahui fungsi kepadatan peluang dari distribusi poisson sebagai berikut:

e—/’[ x

;x=10(0012,..);1>0

flx) =

x!

dan fungsi distribusi kumulatif distribusi poisson sebagai berikut:

n

X .
A* Al
F(x)=Ze"1—=e‘A —

x! i!
x=0 i=0

Untuk 4 = 5.4 diperoleh

l

F(x) = e‘5'4z (5',"})1
i=0

Kemudian akan dihitung nilai F(x) untuk semua data.

Untuk x =1
1 .
5.4)
F(l) = 6_5'42( ,')
ot i!
(5.4)° (5.4)t
_ _-54
F(1)=e ol + 1
F(1) = 0.0045[1 + 5.4] = 0.0045[6.4] = 0.0289
Untuk x = 6

l

> (5.4)!
F(6) — e—5.4z "|
i=0

54° (54 (542 (G4 (GA* (545 (5.4
0!+1!+2!+3!+4!+5!+6!

F(6) = 0.0045[1 + 5.4 + 14.58 + 26.244 + 35.4294 + 38.2638 + 34.4374]
F(6) = 0.0045[155.3545] = 0.70167

F(6) = e™>*
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Untuk x =9

> (5.4)!
F(g) — e—5.4zl':_'
i=0

[ GO (5.4)?* (5.4)° (5.4)* (54)° (54)°
F(g):es'l o o a1 T3 Ta s el
(54)7 (5.4)% (5.4)°
L T TRT

F(9) = 0.0045[1 + 5.4 + 14.58 + 26.244 + 35.4294 + 38.2638 + 34.4374
+ 26.56598 + 17.932 + 10.759]
F(9) = 0.0045[210.6118] = 0.95123

Untuk x = 10

 (5.4)!
F(10) = e—5-4ZT
i=0

0 1 2 3 4 5 6
_s4[(5:4) +(5.4) +(5.4) +(5.4) +(5.4) +(5.4) +(5.4)

F(10) = e 0! 10 21 31 41 51 6!
(5.4)7 (5.4)® (5.4)° (5.4)10
t Ty o T

F(10) = 0.0045[1 + 5.4 + 14.58 + 26.244 + 35.4294 + 38.2638 + 34.4374
+ 26.56598 + 17.932 + 10.759 + 5.80998]
F(10) = 0.0045[216.4217] = 0.977486

Kemudian akan dicari nilai H(x) dengan menggunakan Persamaan (2.14).

2

H(1) =z = 0.4
3

H(6) =z= 0.6
4

H(g) =§ = 0.8
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5
H(10) =2 =1

Kemudian dicari nilai |F(x) — H(x)].

|F(1) — H(1)| = |0.0289 — 0.4| = |-0.37109| = 0.37109
|F(6) —H(6)| =10.701671 — 0.6] = |[0.10167| = 0.10167
|F(9) — H(9)| =[0.95125 — 0.8| = [0.151245| = 0.151245
|F(10) — H(10)| = |0.977486 — 1| = |—0.022514| = 0.022514

Berdasarkan Persamaan (2.13) diperoleh nilai Dp;yng sebesar 0.371094 .

Sedangkan D;,pe; Sebesar 0.56327 yang diperoleh melalui tabel Kolmogorov-

Smirnov pada Lampiran 3. Karena Dpisyng < Diaper, Maka berdasarkan Kriteria uji
dapat disimpulkan bahwa H, diterima atau dengan kata lain, data mengikuti

sebaran distribusi Poisson.

Validasi dengan menggunakan Matlab.

parameter = fitdist (data, 'poisson')
[h,p,kstat,cv]=kstest (data, 'CDF',parameter)

0.3855

kstat =

0.3711

0.5633

Gambar 2.7 Uji Kolmogorov-Smirnov dengan Matlab
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Dengan menggunakan Matlab, diperoleh nilai statistik uji sebesar 0.3711

dengan D;,p.; Sebesar 0.56327.

2.19 Uji Anderson-Darling

Uji Anderson-Darling adalah memeriksa apakah suatu sampel mengikuti
sebaran dari distribusi probabilitas tertentu dengan berdasarkan pada nilai statistik
uji Anderson-Darling. Statistik uji Anderson-Darling dikenal sebagai statistik yang
kuat dengan menekankan perbedaan pada ujung kurva antara fungsi empiris dan
fungsi distribusi kumulatif dari distribusi yang diasumsikan (Ang & Tang, 2007).
Statistik uji Anderson-Darling dapat didefinisikan sebagai

1 n
A2 = —n— - ;(Zi — D[log F(x;) +log(1 — F(xp41-1)] (2.15)

Di mana

A? - Statistik uji Anderson-Darling.

F(x) :Fungsi distribusi kumulatif distribusi yang dihipotesiskan.

n : Jumlah data.

i : Frekuensi kumulatif.

Dengan kriteria uji, jika nilai Dyizyng > Diqner dengan tingkat error sebesar

a, maka H, ditolak. Jika nilai Dyjtyng < Digper dengan tingkat error sebesar a,
maka H, diterima atau dengan kata lain data mengikuti model sebaran distribusi

tersebut.

Contoh 2.9

Akan dilakukan uji hipotesis data acak pada Tabel 2.1 yang diasumsikan
berdistribusi normal dengan uji Anderson-Darling dengan hipotesis yang
digunakan sebagai berikut :

H, : Data mengikuti model sebaran distribusi Normal.

H, : Data tidak mengikuti model sebaran distribusi Normal.

dan dengan taraf signifikan sebesar 0.05.
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Penyelesaian

Tabel 2.3 Uji Anderson Darling

Data | (x; —p) | (x; — p)? K;f;i?ﬂcséi) F(x) F(xn41-1) AD(S);
1 —4.4 19.36 1 0.151844633 | 0.858881245 | -0.768610189
1 —4.4 19.36 2 0.151844633 | 0.799978446 | -2.096536551
6 0.6 0.36 3 0.555771679 | 0.555771679 | -1.398814331
9 3.6 12.96 4 0.799978446 | 0.151844633 | -0.543006713
10 4.6 21.16 5 0.858881245 | 0.151844633 | -0.570268904

Penjelasan Tabel 2.3

Susun data dari terkecil ke terbesar, kemudian hitung frekuensi kumulatif data.

Diketahui fungsi kepadatan peluang dari distribusi normal sebagai berikut:

flx) =

1
e
V2mo

D), —c0 < x < o0

dan fungsi distribusi kumulatif distribusi normal sebagai berikut:

F(x)=f_x ! e(

o V2o

Hitung mean dan standard deviasi

ﬂ_

2(x — Il)z

SD =

5
1

1+1+6+9+10
= =54

n—1

1 1
2 73.212
= [ 2 = 4.27785

Hitung nilai F(x;) dengan menggunakan fungsi distribusi kumulatif distribusi

normal.

1

o V2o

N2
e(%)(%) dt = 0.151844633
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6 1 1N\ /=y 2
F(6) =f me(i)(Tﬂ) dt = 0.555771679

2 1
FO) = j-ooVZT[O-

10

1\ (t—p\?
e(f)(TM) dt = 0.799978446

1N E— 1) 2
e(f)(tTﬂ) dt = 0.858881245

Kemudian nilai F(x;) yang sudah diperoleh, disusun secara terurut dari yang
terbesar ke yang terkecil untuk memperoleh nilai F(x,;—;). Lalu hitung nilai S

dengan rumus sebagai berikut :

2i—1
S= Z AD(S); = Z — (In(F(x) +In(1 = F(n1 )
Dimana n adalah banyaknya data. Sehingga diperoleh nilai S = —5.37724.

Hitung nilai statistik uji dengan rumus sebagai berikut :

A? = —n—s=-5-—(-5.37724)
A? = 0.377237

Berdasarkan Persamaan (2.15) diperoleh nilai Dpizyng Sebesar 0.377237 .

Sedangkan D;,p; Sebesar 2.5 yang diperoleh melalui tabel Anderson-Darling pada

Lampiran 4. Karena Dpjtyng < Diqper » Maka berdasarkan kriteria uji dapat

disimpulkan bahwa H,, diterima atau dengan kata lain, data mengikuti sebaran

distribusi Normal.

Validasi dengan Matlab

parameter = fitdist (data, 'poisson')
[h,p, kstat,cv]=adtest (data, 'Distribution', parameter)
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Gambar 2.8 Uji Anderson-Darling dengan Matlab

Dengan menggunakan Matlab, diperoleh nilai D¢, Sebesar 0.3772 dengan

D;aper SEDESAr 2.5314.

2.20 Normalisasi Z-Score
Normalisasi Z-Score adalah salah satu teknik transformasi data yang

berdasarkan pada nilai rata-rata data dan nilai standar deviasi data (Henderi, 2021).

(2.16)

Di mana
Z : data yang sudah dinormalisasi
x : data yang akan dinormalisasi
u : rata-rata data

o :standard deviasi data
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2.21 Analisis Klaster

Pengelompokan data atau Clustering adalah proses membagi sekelompok
objek ke dalam beberapa kelompok/klaster berdasarkan kesamaan dan
ketaksamaannya. Dalam mengelompokkan data, terdapat beberapa metode yang
dapat digunakan. Namun, secara umum metode pengelompokkan data terbagi
menjadi dua jenis, hirarki clustering dan non-hirarki clustering. Hirarki clustering
sendiri terbagi menjadi dua jenis yaitu Agglomerative Hierarchical Clustering dan
Divisive Hierarchical Clustering. Agglomerative Hierarchical Clustering akan
menganggap setiap objek sebagai sebuah klaster, kemudian beberapa klaster
digabungkan menjadi sebuah klaster baru sampai diperoleh klaster yang diinginkan.
Sedangkan Divisive Hierarchical Clustering akan menganggap semua objek
tergabung dalam sebuah klaster, kemudian dipisahkan menjadi beberapa klaster
sampai diperoleh klaster yang diinginkan. Adapun contoh dari hirarki Clustering
seperti Single Linkage Clustering, Complete Linkage Clustering, Average Linkage

Clustering, dan Metode Ward.

2.22 Single Linkage Clustering

Single Linkage Clustering merupakan salah satu jenis dari Agglomerative
Hierarchical Clustering. Pada metode Single Linkage, setiap objek akan
ditempatkan ke dalam sebuah klaster terpisah. Kemudian, klaster-klaster yang
memiliki jarak antar klaster terdekat akan dikelompokkan menjadi sebuah klaster
baru pada setiap iterasi hingga kondisi terminasi tertentu terpenuhi. Jarak antar
klaster dapat dihitung dengan menggunakan Euclidean Distance, dengan rumus

sebagai berikut:

1
2

dauy) = [Z (o = y1)? (2.17)
k=1

Di mana

dq,v) :jarak antar klaster u dan klaster v
Xp . data pada klaster u

yYx - data pada klaster v
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Misalkan terdapat tiga buah data yaitu U, V, dan W dengan U dan V berada
dalam satu klaster (UV). Maka jarak antar data baru antara klaster (UV) ke W
dapat dihitung dengan cara mencari nilai terkecil antara jarak U ke W dan jarak VV
ke IV.

d(wyyw) = min{dwwy, dvw)} (2.18)

Di mana
dwyyw - jarak antar klaster (U, V) dan klaster W
dyw - jarak antar klaster U dan klaster W
dyw - jarak antar klaster V dan klaster W
Langkah-langkah dalam melakukan klasterisasi dengan metode Single
Linkage Clustering sebagai berikut:
1. Dimulai dengan mencari jarak antar data dengan menggunakan Persamaan
(2.16).
2. Pada iterasi pertama, tentukan pasangan data yang memiliki jarak antar data
terkecil.
3. Pasangan data yang memiliki jarak antar data terkecil akan digabungkan menjadi
suatu Kklaster baru.

4. Ulangi langkah 2 dan langkah 3 sampai klaster yang diinginkan terbentuk.

Contoh 2.10
Diberikan data sebagai berikut. Bagaimana cara mengklasterisasi data dibawah

dengan menggunakan metode Single Linkage Clustering?

Tabel 2.4 Data

Data| X | Y
U, | 040 | 0.53
U, | 022038
Us; | 0.35 ] 0.32
U, | 0.26 | 0.19
Us | 0.08 | 0.41
U, | 0.45 | 0.30
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Penyelesaian

Cari jarak antar data terlebih dahulu dengan menggunakan Persamaan (2.17).

Jarak U; ke U,

Jarak U; ke U

Jarak U; ke Uy

Jarak U; ke Us

1

dey,u,) = [(0.40 — 0.22)% + (0.53 — 0.38)2]2
1
d(w,u, = [(0.18)% + (0.15)%]2

1 1
dw,u, = [0.0324 + 0.0225]2 = [0.0549]2
dey,u,) = 0.2343 ~ 0.23

1

dw,uy) = [(0.40 — 0.35)? + (0.53 — 0.32)?]2
1
dw,u,) = [(0.05)% + (0.21)?]2

1 1
dw,uy) = [0.0025 + 0.0441]2 = [0.0466]2
dey, u,) = 0.2158 =~ 0.22

1
dey, v, = [(0.40 — 0.26)% + (0.53 — 0.19)2]2

1
2

dw, vy = [(0.14)% + (0.34)?]

1
2

1
de, v, = [0.0196 + 0.1156]2 = [0.1352]
dey, v, = 0.3676 ~ 0.37

1
2

dw,vs) = [(0.40 — 0.08)2 + (0.53 — 0.41)?]

1
dw, v = [(0.32)% + (0.12)*]2
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1 1
dw, v = [0.1024 + 0.0144]2 = [0.1168]2
dey, v, = 0.3417 = 0.34

Jarak U; ke Ug

1

dey, v, = [(0.40 — 0.45)% + (0.53 — 0.30)2]2
1
dw, vy = [(—0.05)? + (0.23)]2

1 1
d(,ue = [0.0025 + 0.0529]2 = [0.0554]2
dey, v, = 02353 ~ 0.24

Proses ini dilakukan terus hingga diperoleh semua jarak antar klaster. Jarak antar
klaster yang sudah diperoleh, kemudian dibentuk ke dalam bentuk tabel untuk
mempermudah perhitungan. Sehingga diperoleh tabel jarak antar klaster sebagai
berikut :

Tabel 2.5 Jarak Antar Klaster

U, U, Us U, Us U,
U, 0
U, | 023 0
U; | 022 | 014 0
U, | 037 | 019 | 0.16 0
Us | 034 | 014 | 028 | 0.28 0
Ug | 024 | 024 | 010 | 022 | 0.39 0

Iterasi 1

Kemudian berdasarkan Tabel 2.5, cari jarak antar klaster terdekat yaitu
dw,u, = 0.10 sehingga U; dan U, akan membentuk sebuah Klaster baru.
Kemudian akan dicari jarak antar klaster yang baru dengan menggunakan

Persamaan (2.18).

d(wyueu,) = Min{dw, v,y dw,uy} = min{0.22,0.24} = 0.22
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A ueu,) = min{dy, y,), dw, v, } = min{0.14,0.24} = 0.14
A ueus) = min{dy, y,), dw, v, } = min{0.16,0.22} = 0.16

(s ueus) = min{dy, y.), dw, v, } = min{0.28,0.39} = 0.28
Diperoleh tabel jarak antar klaster yang baru sebagai berikut :

Tabel 2.6 Jarak Antar Klaster pada Iterasi Ke-1

U U, |UsUs]| U, Us
U, 0
U, | 0.23 0

Us,Ug | 022 | 0.14 0
U, | 037 | 019 | 0.16 0
Us | 034 | 014 | 028 | 0.28 0

Jika jumlah klaster yang ingin dibentuk sebanyak 5 klaster, maka perhitungan
dapat dihentikan pada Iterasi 1 dengan klaster yang terbentuk berdasarkan Tabel
2.8 yaitu klaster U, klaster U,, klaster (Us, Ug), klaster U,, dan klaster Us. Jika

tidak, maka perhitungan akan dilanjutkan ke Iterasi 2.

Iterasi 2
Pada Tabel 2.6, cari jarak antar Klaster terdekat yaitu d(y_y,) = 0.14 dan

d((usuev,) = 0-14. Namun klaster baru yang akan terbentuk hanya klaster

(U;,Us). Hal ini dikarenakan dy, y,) merupakan jarak antar klaster Us dan U,

dimana masing-masing klaster beranggotakan satu anggota. Sedangkan

d((ug,u(,),uz) merupakan jarak antar klaster (Us,Ug) dan U, , dimana klaster

(Us, Ug) beranggotakan dua anggota. Kemudian akan dicari jarak antar klaster yang

baru dengan menggunakan Persamaan (2.18).

d(wpueus) = min{dy, y,), dw, v} = min{0.23,0.34} = 0.23

d((UZrUS)r(U3rU6)) = min {d(UZI(U3IU6)), d(Us,(U3,U6))} = min{0.14 ) 0.28} = 0.14

Ay, = min{dy, ;) dw, u,} = min{0.19,0.28} = 0.19
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Diperoleh tabel jarak antar klaster yang baru sebagai berikut :

Tabel 2.7 Jarak Antar Klaster pada Iterasi Ke-2

U, |U,Us | Us,Us | U,
U, 0
Uy, Us | 0.23 0
Us,Ug | 022 | 0.14 0
u, | 037 | 019 | 0.16 0

Jika jumlah klaster yang ingin dibentuk sebanyak 4 klaster, maka perhitungan
dapat dihentikan pada Iterasi 2 dengan klaster yang terbentuk berdasarkan Tabel
2.9 yaitu klaster U,, klaster (U,, Us), klaster (Us, Ug), dan klaster U,. Jika tidak,
maka perhitungan akan dilanjutkan ke Iterasi 3.

Iterasi 3

Pada Tabel 2.7, cari jarak antar klaster terdekat yaitu d((y, ), vs)) = 0-14

sehingga (Us, Ug) dan (U,, Us) akan membentuk sebuah klaster baru. Kemudian

akan dicari jarak antar klaster yang baru dengan menggunakan Persamaan (2.18).

(s vevmo ;) = min{d(%mul), d((uz,us>,ul)} — min{0.22,0.23,} = 0.22

d((U3,U6,U2,U5),U4) = min {d((U3,U6),U4)’ d((UZrUS)lU4)} = min{0.16 ) 0.19 ,} = 0.16
Diperoleh tabel jarak antar klaster yang baru sebagai berikut :

Tabel 2.8 Jarak Antar Klaster pada Iterasi Ke-3

Ul U3' U6' UZ' US U4-
U, 0
Us,Ug, Uy, Us | 0.22 0
U, 0.37 0.16 0

Jika jumlah klaster yang ingin dibentuk sebanyak 3 klaster, maka perhitungan

dapat dihentikan pada Iterasi 3 dengan klaster yang terbentuk berdasarkan Tabel
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2.10 yaitu klaster Uy, Kklaster (Uz, Ug, U,, Us), dan Klaster U,. Jika tidak, maka
perhitungan akan dilanjutkan ke Iterasi 4.

Iterasi 4

Pada Tabel 2.8, cari jarak antar klaster terdekat yaitu d(y,y,u,v,),u,) = 0-16

sehingga (Us, Ug, U,, Us) dan U, akan membentuk sebuah klaster. Kemudian akan

dicari jarak antar klaster yang baru dengan menggunakan Persamaan (2.18).

(03,060, U5,U,),0,) = MIN {d(ws,ué,uz,us),ul); d(u4,ul)}

= min{0.22,0.37} = 0.22
Diperoleh tabel jarak antar klaster yang baru sebagai berikut :

Tabel 2.9 Jarak Antar Klaster pada Iterasi Ke-4

Ul U3' U6r U4-' UZ! U5
Uy 0

Us,Ug, Uy, Us, U, | 0.22 0

Jika jumlah klaster yang ingin dibentuk sebanyak 2 klaster, maka perhitungan
dapat dihentikan pada Iterasi 4 dengan klaster yang terbentuk berdasarkan Tabel
2.9 yaitu klaster U, dan klaster (Us, Ug, U,, Us, Uy).

Validasi Dengan Menggunakan Matlab
Dengan menggunakan syntax berikut, data akan diklaster kedalam 2,3,4, dan 5

klaster.

A = pdist (DATA);
B = linkage (DATA, 'single');
D = cluster (B, 'Maxclust', c);

dimana c adalah banyaknya klaster yang ingin dibentuk.
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Tabel 2.10 Hasil Klasterisasi dengan Matlab

Data Jumlah Klaster

2 3 4 5
A 1 1 1 1
U, 2 2 2 2
Us 2 2 3 3
U, 2 3 4 4
Us 2 2 2 5
Ug 2 2 3 3

Berdasarkan Tabel 2.10, diketahui bahwa untuk 2 klaster yang terbentuk, U,
berada pada klaster 1 dan U,.Us, U,, Us dan Ug berada pada klaster 2. Untuk 3
klaster yang terbentuk, U; berada pada klaster 1, U,.U;, Us dan Ug berada pada

Klaster 2, dan U, berada pada klaster 3 dan seterusnya.

2.23 Index Davies-Bouldin

Index Davies-Bouldin (IDB) merupakan salah satu metode untuk
mengevaluasi klaster dalam metode pengelompokkan data dengan skema evaluasi
klaster internal, dimana baik tidaknya sebuah klaster dapat dilihat dari kuantitas dan
jarak antar klaster. Index Davies-Bouldin (IDB) memaksimalkan jarak antar kalster
dan meminimalkan jarak antar data pada sebuah klaster. Sehingga jika nilai Index
Davies-bouldin (IDB) semakin kecil maka hasil klaster yang diperoleh semakin

optimal. Nilai Index Davies-bouldin dirumuskan sebagai berikut :

R, (2.19)

~~

o

S,

I
&=
(ngls

dengan

j=1,..kizj Y
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dan

o SSW; + SSW;
Y SSB;;
dengan
IDB : Indeks Davies-bouldin
k - Jumlah Klaster
R; - Nilai R;; maksimum untuk setiap Klaster
R;j : Ukuran kemiripan antara klaster i dengan klaster j

(2.20)

SSW; :Jarak rata-rata antara anggota pada klaster i terhadap pusat klaster i

SSB;; :jarak pusat klaster i ke pusat klaster j

ij

Untuk menghitung jarak pusat klaster i ke pusat Kklaster j dapat dihitung

dengan menggunakan Persamaan (2.8) sehingga SSB;; dapat dirumuskan sebagai

berikut :
SSBU = d(Ci;Cj)
dan SSW; dapat dirumuskan sebagai berikut :

1
n; 2

1 2 ]
SSWL = n_l,z(d(xt’ci)) ,xt E l

t=1
dengan
n;
! €
c; =— Xt , X [
i n; t t
t=1
Di mana

c; : Titik pusat Klaster i

n; :Jumlah anggota klaster i

(2.21)

(2.22)

(2.23)
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Langkah-langkah untuk mengevaluasi hasil klaster yang terbentuk dengan

Index Davies-Bouldin sebagai berikut :

. Tentukan titik pusat untuk setiap Klaster,

. Hitung jarak rata-rata antara anggota pada klaster i terhadap pusat klaster i,

. Hitung jarak pusat klaster i ke pusat klaster j,

. Tentukan nilai R;; maksimal untuk setiap klaster,

1
2
3
4. Hitung ukuran kemiripan antara klaster i dengan klaster j,
5
6

. Hitung nilai Index Davies-Bouldin

Contoh 2.11

Berapa jumlah klaster optimum yang terbentuk untuk contoh 2.10.

Penyelesaian

Evalusi hasil klaster untuk 2 klaster dengan Index Davies-Bouldin. Berdasarkan
Tabel 2.10 untuk 2 klaster sebagai berikut :

Tabel 2.11 Klaster yang Terbentuk

Data X Y Klaster
Uy 0.40 0.53 1
U, 0.22 0.38 2
U, 0.35 0.32 2
U, 0.26 0.19 2
Us 0.08 0.41 2
Ug 0.45 0.30 2

Kemudian dicari titik pusat c¢; dan ¢, dengan menggunakan Persamaan (2.23).

uUntuk c,

49



Untuk c,

(0.22 + 0.35 + 0.26 + 0.08 + 0.45)

v = = 0272
x 5

(0384032 +0.19 + 0.41 + 0.30)

y= - =032

Sehingga diperoleh titik pusat c¢; dan c, sebagai berikut :

Tabel 2.12 Titik Pusat

Titik Pusat X Y
C1 0.4 0.53
Cy 0.272 0.320

Kemudian akan dicari jarak rata-rata antara anggota pada klaster 1 terhadap pusat

klaster 1 dengan menggunakan Persamaan (2.22).

1
de, ¢, = [(0.40 — 0.4) + (0.53 — 0.53)2]2 = 0

1
SSWy = [(d(ul,cl))z]z = [(0)2]% =0

Kemudian akan dicari jarak rata-rata antara anggota pada klaster 2 terhadap pusat

klaster 2 dengan menggunakan Persamaan (2.22).

dw,c, = [(0.22 —0.272) + (0.38 — 0.32)2]7 = 0.0794
dw,c, = [(0.35-0.272)* 4+ (0.32 — 0.32)2]% =0.078
dw,c, = [(0.26 —0.272) + (0.19 — 0.32)2]2 = 0.13055
dw,c, = [(0.08 —0.272)% + (0.41 — 032)2]7 = 0.21205

1
de,c,) = [(0.45 — 0.272)% + (0.30 — 0.32)2]2 = 0.17912
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1

- 2 2 2 2 212
(d(Uzrcz)) +(d(U3’C2)) +(d(U4’C2)) +(d(U5'C2)) +(d(U6'C2)) ?

SSW2 = 5

1
(0.0794)% + (0.078)% + (0.13055)2 + (0.21205)? + (0.17912)?]2

5

1
10.0063 + 0.0061 + 0.017 + 0.04496 + 0.032172 1
= c = [0.021296]2

= 0.145931

Kemudian hitung jarak pusat klaster 1 ke pusat klaster 2 dengan menggunakan

Persamaan (2.21).

1
SSB;, = [(0.4 — 0.272)% 4+ (0.53 — 0.32)?]2
= 0.245935

Kemudian hitung ukuran kemiripan antara klaster 1 dengan klaster 2 dengan

menggunakan Persamaan (2.20).

(0 + 0.145931)
Ryp =
0.245935

= 0.593374

Ukuran kemiripan yang sudah diperoleh kemudian akan dibentuk menjadi
sebuah tabel. Dimana tabel yang terbentuk nantinya akan digunakan untuk

menentukan ukuran kemiripan maksimal untuk setiap klaster.

Tabel 2.13 Ukuran Kemiripan

1 2 R maksimum
1 0 0.593374 0.593374
2 0.593374 0 0.593374

Berdasarkan Tabel 2.13, dapat diketahui bahwa ukuran kemiripan klaster 1

dengan Klaster 2 sebesar 0.593374. Sehingga diperoleh R maksimum untuk klaster
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1 dan klaster 2 sebesar 0.593374. Dengan menggunakan Persamaan (2.19)

diperoleh nilai Index Davies Bouldin,

B = (0.593374 + 0.

593374)
= 0.593374

2

Validasi menggunakan Software RStudio

library(ggplot?2)

library (factoextra)
library (tidyverse)
library(cluster)

library (MVN)
library(scales)

library (fpc)
library(clusterSim)
library (dendroextras)
dt=read.delim("clipboard")
dtl=scale (dt)

jarak=dist (x=dtl, method
singlel=hclust (jarak, method
Kelompok cutree (singlel,
tabel cbind(dtl,Kelompok)
dbi index.DB (x=dt, Kelompok, ja
dbi$DB

k

"euclidean")

"single")
2)

rak, centrotypes = "centroids")

Dimana k adalah jumlah klaster yang terbentuk.

Diperoleh nilai Index Davies-Bouldin untuk jumlah klaster sebanyak 2 klaster

yaitu 0.593374.

list [8]
double [1]
double [2]

double [2 x 2]

MName
@ dbi
DB

double [2 x 2]
double [2]

double [2 x 2]

r
R
d
S

centers

Value

List of length 6
05933743

0.593 0.593

MNaM 0.593 0.593 Inf
0.000 0.246 0.246 0.000
0.0000.146
0.4000.272 0.530 0.320

Gambar 2.9 Evaluasi Klaster dengan R Studio

Kemudian dengan syntax yang serupa akan dicari nilai Index Davies-Bouldin

untuk jumlah klaster sebanyak 3,4 dan 5 klaster. Sehingga diperoleh nilai Index

Davies-Bouldin untuk jumlah klaster sebanyak 2,3,4 dan 5 klaster sebagai berikut:
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Tabel 2.14 Nilai Index Davies-Bouldin

Jumlah

Klaster DB
2 0.593374
3 0.82018
4 0.3720298
5 0.2401896

Berdasarkan Tabel 2.14, nilai IDB untuk 2 klaster sebesar 0.593374. Nilai
IDB untuk 3 klaster sebesar 0.82018. Nilai IDB untuk 4 klaster sebesar 0.3820298
dan nilai IDB untuk 5 klaster sebesar 0.2401896. Karena nilai IDB untuk 5 klaster
merupakan nilai IDB terkecil sebesar 0.2401896, maka diperoleh jumlah Klaster

optimum yaitu sebanyak 5 klaster.
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